Diviseur (géométrie algébrique)En mathématiques, plus précisément en géométrie algébrique, les diviseurs sont une généralisation des sous-variétés de codimension 1 de variétés algébriques ; deux généralisations différentes sont d'un usage commun : les diviseurs de Weil et les diviseurs de Cartier. Les deux concepts coïncident dans les cas des variétés non singulières. En géométrie algébrique, comme en géométrie analytique complexe, ou en géométrie arithmétique, les diviseurs forment un groupe qui permet de saisir la nature d'un schéma (une variété algébrique, une surface de Riemann, un anneau de Dedekind.
Cryptographiethumb|La machine de Lorenz utilisée par les nazis durant la Seconde Guerre mondiale pour chiffrer les communications militaires de haut niveau entre Berlin et les quartiers-généraux des différentes armées. La cryptographie est une des disciplines de la cryptologie s'attachant à protéger des messages (assurant confidentialité, authenticité et intégrité) en s'aidant souvent de secrets ou clés. Elle se distingue de la stéganographie qui fait passer inaperçu un message dans un autre message alors que la cryptographie rend un message supposément inintelligible à autre que qui de droit.
Nombre à moyenne harmonique entièreEn arithmétique, un nombre à moyenne harmonique entière est un entier strictement positif dont les diviseurs positifs ont pour moyenne harmonique un nombre entier. Autrement dit, si a1, a2, ..., an sont les diviseurs du nombre, doit être un entier. Ces nombres ont été définis par Øystein Ore en 1948 et apparaissent dans la littérature mathématique anglophone sous différents noms, en particulier, Harmonic divisor number, Ore's (harmonic) numbers, harmonic numbers, numbers with integral harmonic mean ; il ne semble pas y avoir de terminologie attestée en français.
Nombre premier de WilsonEn arithmétique, un nombre premier de Wilson est un nombre premier p tel que p divise (p – 1)! + 1, où ! désigne la fonction factorielle ; comparer ceci avec le théorème de Wilson, qui énonce que tout nombre premier p divise (p – 1)! + 1. Les seuls nombres premiers de Wilson connus sont 5, 13, et 563 () ; si d'autres existent, ils doivent être plus grands que 2 × 10. On conjecture qu'il existe une infinité de nombres premiers de Wilson, et que le nombre de nombres premiers de Wilson dans un intervalle [x, y] est d'environ log(log(y)/log(x)).
Linear system of divisorsIn algebraic geometry, a linear system of divisors is an algebraic generalization of the geometric notion of a family of curves; the dimension of the linear system corresponds to the number of parameters of the family. These arose first in the form of a linear system of algebraic curves in the projective plane. It assumed a more general form, through gradual generalisation, so that one could speak of linear equivalence of divisors D on a general scheme or even a ringed space (X, OX).
Algorithme de Las VegasEn informatique, un algorithme de Las Vegas est un type d'algorithme probabiliste qui donne toujours un résultat correct ; son caractère aléatoire lui donne de meilleures performances temporelles en moyenne. Comme le suggère David Harel dans son livre d'algorithmique, ainsi que Motvani et Raghavan, le tri rapide randomisé est un exemple paradigmatique d'algorithme de Las Vegas.
Ample line bundleIn mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety X amounts to understanding the different ways of mapping X into projective space.
Identité (mathématiques)En mathématiques, le mot « identité » est employé dans plusieurs sens : il peut par exemple désigner un objet bien défini jouant un rôle particulier dans une famille d'objets (on parle ainsi de la fonction identité parmi les fonctions, de l'élément identité dans un groupe, de la matrice identité parmi les matrices, etc.). Cet article est consacré à un autre sens : une identité est une égalité entre deux expressions qui est vraie quelles que soient les valeurs des différentes variables employées ; par abus de langage, on baptise parfois aussi « identité » une égalité entre des termes constants, qu'on considère comme fondamentale ou surprenante.
Mathématiques mésopotamiennesthumb|250px|Photographie de la tablette YBC 7289 annotée. Les nombres écrits dans le système babylonien donnent la racine carrée de 2 avec quatre chiffres sexagésimaux significatifs, soit près de six chiffres décimaux :1 + 24/60 + 51/602 + 10/603 = 1,41421296... (crédit : Bill Casselman). Les mathématiques mésopotamiennes sont les mathématiques pratiquées par les peuples de l'ancienne Mésopotamie (dans l’Irak actuel), depuis l'époque des Sumériens jusqu'à la chute de Babylone en .