Séparation et évaluationUn algorithme par séparation et évaluation, ou branch and bound en anglais, est une méthode générique de résolution de problèmes d'optimisation combinatoire. Cet algorithme a été introduit par Ailsa Land et Alison Harcourt (Doig) en 1960. L'optimisation combinatoire consiste à trouver un point minimisant une fonction, appelée coût, dans un ensemble dénombrable. Une méthode naïve pour résoudre ce problème est d'énumérer toutes les solutions du problème, de calculer le coût pour chacune, puis de donner le minimum.
Diagramme de BodeLe diagramme de Bode est un moyen de représenter la réponse en fréquence d'un système, notamment électronique. Hendrik Wade Bode, des Laboratoires Bell, a proposé ce diagramme pour l'étude graphique simple d'un asservissement et de la contre-réaction dans un dispositif électronique. Il permet de visualiser rapidement la marge de gain, la marge de phase, le gain continu, la bande passante, le rejet des perturbations et la stabilité des systèmes à partir de la fonction de transfert.
Contre-réactionvignette|Modèle simple de contre-réaction. En électronique le principe de la contre-réaction permet le contrôle des circuits d', de filtrage ou d'asservissement. Elle permet de rendre leurs caractéristiques de fonctionnement indépendantes, dans une large mesure, des différents constituants internes de ces systèmes. Le principe de la contre-réaction a été découvert par Harold Stephen Black le 2 août 1927. Cette idée lui serait venue alors qu'il se rendait à son travail aux laboratoires Bell.
Optimisation SDPEn mathématiques et en informatique théorique, l'optimisation SDP ou semi-définie positive, est un type d'optimisation convexe, qui étend l'optimisation linéaire. Dans un problème d'optimisation SDP, l'inconnue est une matrice symétrique que l'on impose d'être semi-définie positive. Comme en optimisation linéaire, le critère à minimiser est linéaire et l'inconnue doit également satisfaire une contrainte affine. L'optimisation SDP se généralise par l'optimisation conique, qui s'intéresse aux problèmes de minimisation d'une fonction linéaire sur l'intersection d'un cône et d'un sous-espace affine.
Programmation logiqueLa programmation logique est une forme de programmation qui définit les applications à l'aide : d'une base de faits : ensemble de faits élémentaires concernant le domaine visé par l'application, d'une base de règles : règles de logique associant des conséquences plus ou moins directes à ces faits, d'un moteur d'inférence (ou démonstrateur de théorème ) : exploite ces faits et ces règles en réaction à une question ou requête. Cette approche se révèle beaucoup plus souple que la définition d'une succession d'instructions que l'ordinateur exécuterait.
Scenario optimizationThe scenario approach or scenario optimization approach is a technique for obtaining solutions to robust optimization and chance-constrained optimization problems based on a sample of the constraints. It also relates to inductive reasoning in modeling and decision-making. The technique has existed for decades as a heuristic approach and has more recently been given a systematic theoretical foundation. In optimization, robustness features translate into constraints that are parameterized by the uncertain elements of the problem.
Optimizing compilerIn computing, an optimizing compiler is a compiler that tries to minimize or maximize some attributes of an executable computer program. Common requirements are to minimize a program's execution time, memory footprint, storage size, and power consumption (the last three being popular for portable computers). Compiler optimization is generally implemented using a sequence of optimizing transformations, algorithms which take a program and transform it to produce a semantically equivalent output program that uses fewer resources or executes faster.
Programmation par contraintesLa programmation par contraintes (PPC, ou CP pour constraint programming en anglais) est un paradigme de programmation apparu dans les années 1970 et 1980 permettant de résoudre des problèmes combinatoires de grande taille tels que les problèmes de planification et d'ordonnancement. En programmation par contraintes, on sépare la partie modélisation à l'aide de problèmes de satisfaction de contraintes (ou CSP pour Constraint Satisfaction Problem), de la partie résolution dont la particularité réside dans l'utilisation active des contraintes du problème pour réduire la taille de l'espace des solutions à parcourir (on parle de propagation de contraintes).