Comparison of dynamic load modeling using neural network and traditional method
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Auditory perception is an essential part of a robotic system in Human-Robot Interaction (HRI), and creating an artificial auditory perception system that is on par with human has been a long-standing goal for researchers. In fact, this is a challenging res ...
The way our brain learns to disentangle complex signals into unambiguous concepts is fascinating but remains largely unknown. There is evidence, however, that hierarchical neural representations play a key role in the cortex. This thesis investigates biolo ...
The success of deep learning may be attributed in large part to remarkable growth in the size and complexity of deep neural networks. However, present learning systems raise significant efficiency concerns and privacy: (1) currently, training systems are l ...
Demand forecasting is becoming increasingly important as firms launch new products with short life cycles more frequently. This paper provides a framework based on state-of-the-art techniques that enables firms to use quantitative methods to forecast sales ...
Advances in soft sensors coupled with machine learning are enabling increasingly capable wearable systems. Since hand motion in particular can convey useful information for developing intuitive interfaces, glove-based systems can have a significant impact ...
Institute of Electrical and Electronics Engineers Inc.2022
A reduced basis method based on a physics-informed machine learning framework is developed for efficient reduced-order modeling of parametrized partial differential equations (PDEs). A feedforward neural network is used to approximate the mapping from the ...
The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity distribution function f(upsilon(perpendicular to)) of the fast ions triggering the ICE is modeled using a two-layer deep neural network. The network ...
Unmanned aerial vehicles (UAVs) are widely deployed in air navigation, where numerous applications use them for safety-of-life and positioning, navigation, and timing tasks. Consequently, GPS spoofing attacks are more and more frequent. The aim of this wor ...
In visual crowding, the presence of neighboring elements impedes the perception of a target. Crowding is traditionally explained with feedforward, local models. However, increasing the number of neighboring elements can decrease crowding, i.e., lead to unc ...