Publication

Stop Wasting my FLOPS: Improving the Efficiency of Deep Learning Models

Angelos Katharopoulos
2022
Thèse EPFL
Résumé

Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and memory requirements. In this thesis, we proposemethods for improving the efficiency of deep neural networks.Firstly, we tackle the sample inefficiency of neural network training with animportance sampling algorithm suitable for deep neural networks. This algorithmallows us to focus computation on datapoints that are going to provide usefulgradients for training our models and ignore the ones that will have negligiblegradients. We show that our algorithm can improve the performance of variousneural networks when compared to uniform sampling under a fixed computationalbudget.Secondly, we design a model that is suitable for processing large input imageswith a fraction of the computational and memory requirements of traditionalapproaches. We achieve this by sampling from a data-dependent attentiondistribution in order to only process a portion of the input in highresolution. We demonstrate that our model can learn both the attention and thefeatures in an end-to-end fashion using only single image-wise labels forsupervision.Subsequently, we shift our attention to transformer architectures and introducea kernelized formulation for self-attention that reduces its quadraticcomplexity to linear with respect to the input sequence's length. Furthermore,we uncover the relationship between autoregressive transformers and recurrentneural networks and show that our formulation enables up to 3 orders ofmagnitude faster autoregressive inference.Finally, we develop clustered, attention a method that can approximate softmaxtransformers with reduced computation. This is achieved by grouping elements ofthe input using clustering. We showcase that our formulation provides a bettertrade-off between performance and computation in comparison to the originaltransformer architecture. In addition, we demonstrate that clustered attentioncan approximate pretrained transformer models without any fine-tuning and withminimal loss in performance.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Réseau de neurones récurrents
Un réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Réseau de neurones artificiels
Un réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Afficher plus
Publications associées (474)

Infusing structured knowledge priors in neural models for sample-efficient symbolic reasoning

Mattia Atzeni

The ability to reason, plan and solve highly abstract problems is a hallmark of human intelligence. Recent advancements in artificial intelligence, propelled by deep neural networks, have revolutionized disciplines like computer vision and natural language ...
EPFL2024

Safe Deep Neural Networks

Kyle Michael Matoba

				The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is tr ...
EPFL2024

Deep Learning Theory Through the Lens of Diagonal Linear Networks

Scott William Pesme

In this PhD manuscript, we explore optimisation phenomena which occur in complex neural networks through the lens of 22-layer diagonal linear networks. This rudimentary architecture, which consists of a two layer feedforward linear network with a diagonal ...
EPFL2024
Afficher plus
MOOCs associés (23)
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.