Online Coloring of Comparability Graphs: some results
Publications associées (38)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graph theory is an important topic in discrete mathematics. It is particularly interesting because it has a wide range of applications. Among the main problems in graph theory, we shall mention the following ones: graph coloring and the Hamiltonian circuit ...
Most of the recent heuristics for the graph coloring problem start from an infeasible k-coloring (adjacent vertices may have the same color) and try to make the solution feasible through a sequence of color exchanges. In contrast, our approach (called FOO- ...
An extension of the basic image reconstruction problem in discrete tomography is considered: given a graph G=(V,E) and a family P of chains Pi together with vectors h(Pi)=(hi1,...,hik), one wants to find a partition $V^{1},. ...
Let G = (V, E) be a graph with vertex set V and edge set E. The k-coloring problem is to assign a color (a number chosen in {1, ..., k}) to each vertex of G so that no edge has both endpoints with the same color. We propose a new local search methodology, ...
The graph coloring problem is one of the most famous problems in graph theory and has a large range of applications. It consists in coloring the vertices of an undirected graph with a given number of colors such that two adjacent vertices get different col ...
Starting from the basic problem of reconstructing a 2-dimensional image given by its projections on two axes, one associates a model of edge coloring in a complete bipartite graph. The complexity of the case with k=3 colors is open. Variations and special ...
Extensions and variations of the basic problem of graph coloring are introduced. The problem consists essentially in finding in a graph G a k-coloring, i.e., a partition V-1,...,V-k of the vertex set of G such that, for some specified neighborhood (N) over ...
Given integers j and k and a graph G, we consider partitions of the vertex set of G into j + k parts where j of these parts induce empty graphs and the remaining k induce cliques. If such a partition exists, we say G is a (j, k)-graph. For a fixed j and k ...
A colouring of the vertices of a hypergraph H is called conflict-free if each hyperedge E of H contains a vertex of 'unique' colour that does not get repeated in E. The smallest number of colours required for such a colouring is called the conflict-free ch ...
We are interested in coloring the vertices of a mixed graph, i.e., a graph containing edges and arcs. We consider two different coloring problems: in the first one we want adjacent vertices to have different colors and the tail of an arc to get a color str ...