Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling
Publications associées (36)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
The goals of this project are to study and numerically solve a reduced fluid-structure interaction problem for cardiovascular applications. The first section of this project presents two test cases in order to understand the finite element method for two d ...
Isogeometric analysis (IGA) is a computational methodology recently developed to numerically approximate Partial Differential Equation (PDEs). It is based on the isogeometric paradigm, for which the same basis functions used to represent the geometry are t ...
The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions ...
We consider a differential system based on the coupling of the Navier-Stokes and Darcy equations for modeling the interaction between surface and porous media flows. We formulate the problem as an interface equation, we analyze the associated (nonlinear) S ...
The goal of this project is to numerically solve the Navier-Stokes equations by using different numerical methods with particular emphasis on solving the problem of the flow past a square cylinder. In particular, we use the finite element method based on P ...
A reduced-order strategy based on the reduced basis (RB) method is developed for the efficient numerical solution of statistical inverse problems governed by PDEs in domains of varying shape. Usual discretization techniques are infeasible in this context, ...
An adaptive multiresolution scheme is proposed for the numerical solution of a spatially two-dimensional model of sedimentation of suspensions of small solid particles dispersed in a viscous fluid. This model consists in a version of the Stokes equations f ...
We consider the fluid-structure interaction problem arising in haemodynamic applications. The finite elasticity equations for the vessel are written in Lagrangian form, while the Navier-Stokes equations for the blood in Arbitrary Lagrangian Eulerian form. ...
In this paper we address the numerical approximation of the incompressible Navier-Stokes equations in a moving domain by the spectral element method and high order time integrators. We present the Arbitrary Lagrangian Eulerian (ALE) formulation of the inco ...
When representing realistic physical phenomena by partial differential equations (PDE), it is crucial to approximate the underlying physics correctly, to get precise results, and to efficiently use the computer architecture. Incorrect results can appear in ...