Electrovacuum solutionIn general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein–Maxwell solutions.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Singularité de SchwarzschildLa singularité de Schwarzschild est le comportement divergent de la métrique de Schwarzschild quand . Il ne faut pas la confondre avec la singularité gravitationnelle d'un trou noir. Cette singularité n'est qu'apparente : elle se manifeste dans l'expression classique de cette métrique, mais pas dans d'autres. On considère donc que c'est une singularité mathématique pour la métrique classique de Schwarzschild, mais que ce n'est pas une singularité physique.
Matrix differential equationA differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives. For example, a first-order matrix ordinary differential equation is where is an vector of functions of an underlying variable , is the vector of first derivatives of these functions, and is an matrix of coefficients.