Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Based on defined temperature-dependent material properties, thermo-chemical and thermo-mechanical models were developed to predict the temperature progression and endurance of full-scale slab components exposed to ISO 834 fire conditions on their underside. Important geometrical changes that occur over long fire exposures of FRP materials, such as the radiative shielding effect of delaminating fiber layers and loss of fiber layers, were considered. The predicted temperature progression in the liquid-cooled and non-cooled slab components from the 2-D thermo-chemical model corresponded well with measured values up to 120min of exposure. The validated model allows the prediction of the hot face temperatures, which are very difficult to experimentally measure. The 3-D thermo-mechanical model accurately predicts the measured mid-span deflections and axial strains under serviceability loads in the liquid-cooled case during 120min of fire exposure. [All rights reserved Elsevier]
Andrea Capozzi, Jean-Noël Hyacinthe, Thanh Phong Kevin Lê