On finding nearest neighbors in a set of compressible signals
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Numerous applications demand that we manipulate large sets of very high-dimensional signals. A simple yet common example is the problem of finding those signals in a database that are closest to a query. In this paper, we tackle this problem by restricting ...
This paper addresses the problem of representing multimedia information under a compressed form that permits efficient classification. The semantic coding problem starts from a subspace method where dimensionality reduction is formulated as a matrix factor ...
Computing statistical measures for large databases of time series is a fundamental primitive for querying and mining time-series data [1–6]. This primitive is gaining importance with the increasing number and rapid growth of time series databases. In this ...
We propose and analyze acceleration schemes for hard thresholding methods with applications to sparse approximation in linear inverse systems. Our acceleration schemes fuse combinatorial, sparse projection algorithms with convex optimization algebra to pro ...
Spie-Int Soc Optical Engineering, Po Box 10, Bellingham, Wa 98227-0010 Usa2011
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
We consider the problem of reconstruction of astrophysical signals probed by radio interferometers with baselines bearing a non-negligible component in the pointing direction. The visibilities measured essentially identify with a noisy and incomplete Fouri ...
In this paper we consider the problem of recovering a high dimensional data matrix from a set of incomplete and noisy linear measurements. We introduce a new model that can efficiently restrict the degrees of freedom of the problem and is generic enough to ...
Institute of Electrical and Electronics Engineers2012
This paper introduces a novel algorithm for sparse approximation in redundant dictionaries called the M-term pursuit (MTP). This algorithm decomposes a signal into a linear combination of atoms that are selected in order to represent the main signal compon ...
Institute of Electrical and Electronics Engineers2012
Typical tasks in signal processing may be done in simpler ways or more efficiently if the signals to analyze are represented in a proper way. This thesis deals with some algorithmic problems related to signal approximation, more precisely, in the novel fie ...
This article presents an alteration of greedy algorithms like thresholding or (Orthogonal) Matching Pursuit which improves their performance in finding sparse signal representations in redundant dictionaries. These algorithms can be split into a sensing an ...