Amplificateur optiqueEn optique, on appelle amplificateur optique un dispositif qui amplifie un signal lumineux sans avoir besoin de le convertir d'abord en signal électrique avant de l'amplifier avec les techniques classiques de l'électronique. Un amplificateur à fibre dopée fonctionne à la manière d'un laser. Une portion de fibre optique est dopée et est pompée optiquement avec un laser afin de placer les ions de dopage dans un état excité.
Raman amplificationRaman amplification ˈrɑːmən is based on the stimulated Raman scattering (SRS) phenomenon, when a lower frequency 'signal' photon induces the inelastic scattering of a higher-frequency 'pump' photon in an optical medium in the nonlinear regime. As a result of this, another 'signal' photon is produced, with the surplus energy resonantly passed to the vibrational states of the medium. This process, as with other stimulated emission processes, allows all-optical amplification.
Amplificateur paramétrique optiqueUn amplificateur paramétrique optique, abrégé OPA (pour Optical Parametric Amplfier en anglais), est une source de lumière laser qui émet de la lumière de longueur d'onde variable obtenue par un processus d'amplification paramétriquee. C'est essentiellement la même chose qu'un oscillateur paramétrique optique, mais sans la cavité optique (c'est-à-dire que les faisceaux lumineux ne traversent l'appareil qu'une ou deux fois, au lieu de plusieurs fois).
Oscillation des neutrinosvignette|Phénomène périodique L'oscillation du neutrino est un phénomène de la mécanique quantique dans lequel un neutrino créé avec une certaine saveur leptonique (neutrino électronique, muonique ou tauique) peut être mesuré plus tard ayant une saveur différente. La probabilité d'avoir une valeur donnée de cette propriété varie de façon périodique alors que la particule se propage. L'oscillation du neutrino est d'intérêt tant théorique qu'expérimental, puisque l'observation de ce phénomène implique la non-nullité de la masse de la particule, .
PhotoluminescenceLa photoluminescence (PL) est un processus par lequel une substance absorbe des photons puis ré-émet des photons. Dans le cas d'un semi-conducteur, le principe est d'exciter des électrons de la bande de valence avec un photon d'une énergie supérieure à l'énergie de gap du composé, de telle sorte qu'ils se retrouvent dans la bande de conduction. L'excitation fait donc passer les électrons vers un état d'énergie supérieure avant qu'ils ne reviennent vers un niveau énergétique plus bas avec émission d'un photon.
SpectroscopeLe spectroscope est un appareil destiné à observer les spectres lumineux. Il fut inventé par Joseph von Fraunhofer, illustre opticien allemand, en 1815. vignette|Animation du fonctionnement d'un spectroscope. vignette|Principe du spectroscope Le principe de fonctionnement est le suivant : on éclaire à l’aide de la source à étudier une fente étroite ; une première lentille collimatrice rend parallèle le faisceau lumineux tombant sur la face d’entrée du prisme, ou du réseau ; après dispersion de la lumière une seconde lentille donne sur un écran une suite d’images juxtaposées de la fente, chacune correspond à une longueur d’onde.
Spectre visibleLe spectre visible est la partie du spectre électromagnétique qui est perceptible par l'humain. Le spectre se décompose en rayonnements monochromatiques par le passage de la lumière à travers un dispositif disperseur (prisme ou réseau diffractant) : c'est l'analyse spectrale. La sensibilité de l'œil selon la longueur d'onde diminue progressivement de part et d'autre d'un maximum entre selon le domaine de vision et les conditions de la mesure. On ne peut donner de limites exactes au domaine des rayonnements visibles.
Atomic, molecular, and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms and energy scales around several electron volts. The three areas are closely interrelated. AMO theory includes classical, semi-classical and quantum treatments. Typically, the theory and applications of emission, absorption, scattering of electromagnetic radiation (light) from excited atoms and molecules, analysis of spectroscopy, generation of lasers and masers, and the optical properties of matter in general, fall into these categories.
SpectroscopieLa spectroscopie, ou spectrométrie, est l'étude expérimentale du spectre d'un phénomène physique, c'est-à-dire de sa décomposition sur une échelle d'énergie, ou toute autre grandeur se ramenant à une énergie (fréquence, longueur d'onde). Historiquement, ce terme s'appliquait à la décomposition, par exemple par un prisme, de la lumière visible émise (spectrométrie d'émission) ou absorbée (spectrométrie d'absorption) par l'objet à étudier.
ScintillateurUn scintillateur est un matériau qui émet de la lumière à la suite de l'absorption d'un rayonnement ionisant (photon ou particule chargée). Il existe deux grandes familles de scintillateurs : les scintillateurs organiques : (anthracène, naphtalène, stilbène et terphényle) que l'on retrouve sous forme de monocristaux ou en solution liquide, les scintillateurs inorganiques utilisés sous forme de monocristaux (iodure de sodium, germanate de bismuth), ou bien sous forme de poudres incorporées à un substrat.