BrainGateBrainGate est un système d'implants neuronaux mis au point par la société de bio-technologie Cyberkinetics en 2003, en collaboration avec le département de Neurosciences à l'université Brown. L'appareil a été conçu pour aider ceux qui ont perdu le contrôle de leur membres, ou d'autres fonctions corporelles, comme les patients atteints de sclérose latérale amyotrophique (SLA) ou une lésion de la moelle épinière. La puce, qui est implantée dans le cerveau, surveille l'activité cérébrale chez le patient et convertit l'intention de l'utilisateur en commandes informatiques.
Probabilistic classificationIn machine learning, a probabilistic classifier is a classifier that is able to predict, given an observation of an input, a probability distribution over a set of classes, rather than only outputting the most likely class that the observation should belong to. Probabilistic classifiers provide classification that can be useful in its own right or when combining classifiers into ensembles. Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ŷ: The samples come from some set X (e.
Interface utilisateurL’interface utilisateur est un dispositif matériel ou logiciel qui permet à un usager d'interagir avec un produit informatique. C'est une interface informatique qui coordonne les interactions homme-machine, en permettant à l'usager humain de contrôler le produit et d'échanger des informations avec le produit. Parmi les exemples d’interface utilisateur figurent les aspects interactifs des systèmes d’exploitation informatiques, des logiciels informatiques, des smartphones et, dans le domaine du design industriel, les commandes des opérateurs de machines lourdes et les commandes de processus.
Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Feature (machine learning)In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a phenomenon. Choosing informative, discriminating and independent features is a crucial element of effective algorithms in pattern recognition, classification and regression. Features are usually numeric, but structural features such as strings and graphs are used in syntactic pattern recognition. The concept of "feature" is related to that of explanatory variable used in statistical techniques such as linear regression.
Probabilité a posterioriDans le théorème de Bayes, la probabilité a posteriori désigne la probabilité recalculée ou remesurée qu'un évènement ait lieu en prenant en considération une nouvelle information. Autrement dit, la probabilité a posteriori est la probabilité qu'un évènement A ait lieu étant donné que l'évènement B a eu lieu. Elle s'oppose à la probabilité a priori dans l'inférence bayésienne. La loi a priori qu'un évènement ait lieu avec vraisemblance est .
Meta-learning (computer science)Meta learning is a subfield of machine learning where automatic learning algorithms are applied to metadata about machine learning experiments. As of 2017, the term had not found a standard interpretation, however the main goal is to use such metadata to understand how automatic learning can become flexible in solving learning problems, hence to improve the performance of existing learning algorithms or to learn (induce) the learning algorithm itself, hence the alternative term learning to learn.
Espace probabiliséUn espace de probabilité(s) ou espace probabilisé est construit à partir d'un espace probabilisable en le complétant par une mesure de probabilité : il permet la modélisation quantitative de l'expérience aléatoire étudiée en associant une probabilité numérique à tout événement lié à l'expérience. Formellement, c'est un triplet formé d'un ensemble , d'une tribu sur et d'une mesure sur cette tribu tel que . L'ensemble est appelé l'univers et les éléments de sont appelés les événements.
Linear predictor functionIn statistics and in machine learning, a linear predictor function is a linear function (linear combination) of a set of coefficients and explanatory variables (independent variables), whose value is used to predict the outcome of a dependent variable. This sort of function usually comes in linear regression, where the coefficients are called regression coefficients. However, they also occur in various types of linear classifiers (e.g.
Interface utilisateur tangiblevignette|Reactable, un exemple d'interface utilisateur tangible Une interface utilisateur tangible est une interface utilisateur sur laquelle l'utilisateur interagit avec l'information numérique par le moyen de l'environnement physique. L'objectif de développement des interfaces utilisateur tangibles est d'encourager la collaboration, l'éducation et le design (conception) en donnant à l'information digitale une forme physique, profitant ainsi des capacités humaines de saisir et de manipuler des objets physiques et des matériaux.