La statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Les méthodes statistiques bayésiennes reposent sur le théorème de Bayes pour calculer et mettre à jour les probabilités après l'obtention de nouvelles données. Le théorème de Bayes décrit la probabilité conditionnelle d'un événement basée sur des informations ou des croyances antérieures sur l'événement ou les conditions liées à l'événement. Par exemple, dans l'inférence bayésienne, le théorème de Bayes peut être utilisé pour estimer les paramètres d'une distribution de probabilité ou d'un modèle statistique. Puisque les statistiques bayésiennes traitent la probabilité comme un degré de croyance, le théorème de Bayes peut directement attribuer une distribution de probabilité qui quantifie la croyance au paramètre ou à l'ensemble de paramètres.
Les statistiques bayésiennes ont été nommées d'après Thomas Bayes, qui a formulé un cas spécifique du théorème de Bayes dans son article publié en 1763, An Essay towards solving a Problem in the Doctrine of Chances. Dans plusieurs articles allant de la fin du au début du , Pierre-Simon de Laplace a développé l'interprétation bayésienne de la probabilité. Laplace a utilisé des méthodes qui seraient maintenant considérées comme bayésiennes pour résoudre un certain nombre de problèmes statistiques. De nombreuses méthodes bayésiennes ont été développées par des auteurs plus récents, mais le terme n'a pas été couramment utilisé pour décrire ces méthodes avant les années 1950.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This class is designed to give you an understanding of the basics of empirical asset pricing. This means that we will learn how to test asset pricing models and apply them mostly to stock markets. We
Thomas Bayes ( , né env. en 1702 à Londres - mort le à Tunbridge Wells, dans le Kent) est un mathématicien britannique et pasteur de l'Église presbytérienne, connu pour avoir formulé le théorème de Bayes. Thomas Bayes est issu d'une famille de protestants, qui étaient couteliers. Il reçoit une éducation privée et en 1719, il part pour l'université d’Édimbourg, afin d'étudier la théologie. À la fin des années 1720, il est nommé pasteur à Tunbridge Wells, près de Londres.
Dans les jeux de hasard et des statistiques, la cote d'un événement (odds en anglais) est le ratio entre la probabilité que l'événement se produise et la probabilité qu'il ne se produise pas. On l'exprime souvent comme une paire de nombres où le dénominateur de la cote est ramené à 1. En particulier dans les paris et les jeux d'argent, la cote exprime le gain espéré dans le cas où l'événement sur lequel on a misé se réalise ; par exemple, une « cote de 4 contre 1 » traduit le fait qu'on gagnerait 4 fois sa mise.
Le mot probabilité a été utilisé dans une variété de domaines depuis qu'il a été appliqué à l'étude mathématique des jeux de hasard. Est-ce que la probabilité mesure la tendance réelle physique de quelque chose de se produire, ou est-ce qu'elle est une mesure du degré auquel on croit qu'elle se produira, ou faut-il compter sur ces deux éléments ? Pour répondre à ces questions, les mathématiciens interprètent les valeurs de probabilité de la théorie des probabilités.
Objective: We predicted that accelerometry would be a viable alternative to electromyography (EMG) for assessing fundamental Transcranial Magnetic Stimulation (TMS) measurements (e.g. Resting Motor Threshold (RMT), recruitment curves, latencies). New Metho ...
Elsevier2024
High-level waste, stemming from nuclear electricity generation poses significant environmental and safety concerns. Currently, high-level wastes are stored in interim facilities needing constant monitoring and waiting for a definitive solution. Deep geolog ...
Bayesian Optimization (BO) is typically used to optimize an unknown function f that is noisy and costly to evaluate, by exploiting an acquisition function that must be maximized at each optimization step. Even if provably asymptotically optimal BO algorith ...