TélomèreUn télomère est une région hautement répétitive, donc a priori non codante, d'ADN à l'extrémité d'un chromosome. À chaque fois qu'un chromosome en bâtonnet d'un eucaryote est répliqué, lors de la réplication, qui précède la mitose (division cellulaire), le complexe enzymatique de l'ADN polymérase s'avère incapable de copier les derniers nucléotides : l'absence de télomère signifierait la perte rapide d'informations génétiques nécessaires au fonctionnement cellulaire.
TéloméraseLa télomérase est une ADN polymérase ARN dépendante qui, lors de la réplication de l'ADN chez les eucaryotes, permet de conserver la longueur du chromosome en ajoutant une structure spécifique à chaque extrémité : le télomère (du grec τέλος, extrémité ou fin). Bien que composé de désoxyribonucléotides comme le reste du chromosome, le télomère est synthétisé suivant un mode différent de la réplication classique de l'ADN. Les télomérases sont des ribonucléoprotéines (assemblage d'ARN et de protéines) qui catalysent l'addition d'une séquence répétée spécifique à l'extrémité des chromosomes.
Cycle cellulairevignette|335x335px|Cycle cellulaire d'une cellule eucaryote (car présence de la mitose) Le cycle cellulaire est l'ensemble des étapes qui constituent et délimitent la vie d'une cellule. Ce cycle est composé de plusieurs phases de croissance dans lesquelles la cellule grossit et duplique son matériel génétique (interphase) et d'une phase où celle-ci se divise (mitose) pour donner naissance à deux cellules filles identiques (dans le cas de la mitose). Les cellules filles reproduiront ce cycle, et ainsi de suite.
Cell cycle checkpointCell cycle checkpoints are control mechanisms in the eukaryotic cell cycle which ensure its proper progression. Each checkpoint serves as a potential termination point along the cell cycle, during which the conditions of the cell are assessed, with progression through the various phases of the cell cycle occurring only when favorable conditions are met. There are many checkpoints in the cell cycle, but the three major ones are: the G1 checkpoint, also known as the Start or restriction checkpoint or Major Checkpoint; the G2/M checkpoint; and the metaphase-to-anaphase transition, also known as the spindle checkpoint.
Transcription (biologie)En biologie moléculaire, la transcription est la première étape de l'expression génique basée sur l'ADN, au cours de laquelle un segment particulier d'ADN est « copié » en ARN par une enzyme appelée ARN polymérase. Chez les eucaryotes, la transcription se déroule dans le noyau des cellules. Certains types d'ARN appélés « ARN non codants » n'ont pas vocation à être traduits en protéines et peuvent jouer un rôle régulateur ou structurel (par exemple les ARN ribosomiques).
Telomerase reverse transcriptaseTelomerase reverse transcriptase (abbreviated to TERT, or hTERT in humans) is a catalytic subunit of the enzyme telomerase, which, together with the telomerase RNA component (TERC), comprises the most important unit of the telomerase complex. Telomerases are part of a distinct subgroup of RNA-dependent polymerases. Telomerase lengthens telomeres in DNA strands, thereby allowing senescent cells that would otherwise become postmitotic and undergo apoptosis to exceed the Hayflick limit and become potentially immortal, as is often the case with cancerous cells.
Cellular senescenceCellular senescence is a phenomenon characterized by the cessation of cell division. In their experiments during the early 1960s, Leonard Hayflick and Paul Moorhead found that normal human fetal fibroblasts in culture reach a maximum of approximately 50 cell population doublings before becoming senescent. This process is known as "replicative senescence", or the Hayflick limit. Hayflick's discovery of mortal cells paved the path for the discovery and understanding of cellular aging molecular pathways.
Division cellulairethumb|upright=1.2| Schémas des différents types de divisions cellulaires. La division cellulaire est le mode de multiplication de toute cellule. Elle lui permet de se diviser en plusieurs cellules (deux le plus souvent). C'est donc un processus fondamental dans le monde vivant, puisqu'il est nécessaire à la régénération de tout organisme. Chez les Eucaryotes — caractérisés principalement par des cellules qui possèdent un noyau — il y a deux types de division cellulaire : La mitose qui n'autorise qu'une multiplication asexuée; elle permet la régénération d'un organe, et aussi la croissance.
GèneUn gène, du grec ancien (« génération, naissance, origine »), est, en biologie, une séquence discrète et héritable de nucléotides dont l'expression affecte les caractères d'un organisme. L'ensemble des gènes et du matériel non codant d'un organisme constitue son génome. Un gène possède donc une position donnée dans le génome d'une espèce, on parle de locus génique. La séquence est généralement formée par des désoxyribonucléotides, et est donc une séquence d'ADN (par des ribonucléotides formant de l'ARN dans le cas de certains virus), au sein d'un chromosome.
Réplication de l'ADNredresse=1.2|vignette La réplication de l'ADN, aussi appelée duplication de l'ADN ou synthèse de l'ADN, est le processus au cours duquel l'ADN est synthétisé. Ce mécanisme permet d'obtenir, à partir d'une molécule d'ADN, deux molécules identiques à la molécule initiale. L'ADN dupliqué sera par la suite divisé entre les deux cellules filles lors de la division cellulaire (mitose et méiose). Cela permet de maintenir l'information génétique et de produire deux cellules filles avec un matériel génétique identique.