Publication

Ensembles of SVMs using an Information Theoretic Criterion

Jean-Philippe Thiran, Julien Meynet
2008
Rapport ou document de travail
Résumé

Training Support Vector Machine can become very challenging in large scale problems. Training several lower complexity SVMs on local subsets of the training set can significantly reduce the training complexity and also improve the classification performances. In order to obtain efficient multiple classifiers systems, classifiers need to be both diverse and individually accurate. In this paper we propose an algorithm for training ensembles of SVMs by taking into account diversity between each parallel classifier. For this, we use an information theoretic criterion that expresses a trade-off between individual accuracy and diversity. The parallel SVMs are trained jointly using an adaptation of the Kernel-Adatron algorithm for learning online multiple SVMs. The results are compared to standard multiple SVMs techniques on reference large scale datasets.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.