Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Théorème de la variance totaleEn théorie des probabilités, le théorème de la variance totale ou formule de décomposition de la variance, aussi connu sous le nom de Loi d'Eve, stipule que si X et Y sont deux variables aléatoires sur un même espace de probabilité, et si la variance de Y est finie, alors Certains auteurs appellent cette relation formule de variance conditionnelle. Dans un langage peut-être mieux connu des statisticiens que des spécialistes en probabilité, les deux termes sont respectivement les composantes "non-expliquée" et "expliquée" de la variance (cf.
Raisonnement rétrogradevignette|Un jeu séquentiel en quatre étapes avec une limite de prévoyance Le raisonnement rétrograde ou l'induction à rebours (Backward induction) est une méthode de raisonnement qui consiste à partir d'un résultat final connu pour retracer les étapes ou les événements qui ont conduit à ce résultat. Principalement utilisée en théorie des jeux, il est utilisé pour résoudre les jeux de manière séquentielle en partant de la fin du jeu et en remontant jusqu'au début.