Prédiction dynamiqueLa prédiction dynamique est une méthode inventée par Newton et Leibniz. Newton l’a appliquée avec succès au mouvement des planètes et de leurs satellites. Depuis elle est devenue la grande méthode de prédiction des mathématiques appliquées. Sa portée est universelle. Tout ce qui est matériel, tout ce qui est en mouvement, peut être étudié avec les outils de la théorie des systèmes dynamiques. Mais il ne faut pas en conclure que pour connaître un système il est nécessaire de connaître sa dynamique.
Risque financierUn risque financier est un risque de perdre de l'argent à la suite d'une opération financière (sur un actif financier) ou à une opération économique ayant une incidence financière (par exemple une vente à crédit ou en devises étrangères). Le risque de marché est le risque de perte qui peut résulter des fluctuations des prix des instruments financiers qui composent un portefeuille. Le risque de contrepartie est le risque que la partie avec laquelle un contrat a été conclu ne tienne pas ses engagements (livraison, paiement, remboursement, etc.
Algorithme d'apprentissage incrémentalEn informatique, un algorithme d'apprentissage incrémental ou incrémentiel est un algorithme d'apprentissage qui a la particularité d'être online, c'est-à-dire qui apprend à partir de données reçues au fur et à mesure du temps. À chaque incrément il reçoit des données d'entrées et un résultat, l'algorithme calcule alors une amélioration du calcul fait pour prédire le résultat à partir des données d'entrées.
Évaluation des risquesDans le domaine de la gestion des risques, l'évaluation des risques est l'ensemble des méthodes consistant à calculer la criticité (pertinence et gravité) des dangers. Elle vise outre à les quantifier, à qualifier les dangers (qui doivent donc préalablement avoir été identifiés). Elle se base sur . Dans ce domaine, on se restreint à l'étude du risque aryétique, c'est-à-dire en ne considérant que les événements à conséquences négatives.
Gestion des risquesLa gestion des risques, ou l'anglicisme, management du risque (de l'risk management), est la discipline visant à identifier, évaluer et hiérarchiser les risques liés aux activités d'une organisation, quelles que soient la nature ou l'origine de ces risques, puis à les traiter méthodiquement, de manière coordonnée et économique, afin de réduire et contrôler la probabilité des événements redoutés, et leur impact éventuel.
Récepteur dopaminergiquevignette|Il s'agit d'une illustration d'un neurone dopaminergique avec TAAR1 co-localisé et les effets d'un agoniste TAAR1 (amphétamine ou une amine trace) sur la recapture et l'efflux de dopamine. Ce modèle est basé sur des informations provenant des trois sources suivantes : Offermanns, Stefan ; (eds.), Walter Rosenthal (2008). Encyclopédie de la pharmacologie moléculaire (2e éd.). Berlin : Springer. pp. 1219-1222. . Miller GM (janvier 2011).
Voie méso-limbiqueLe circuit mésolimbique relie l'aire tegmentaire ventrale (ATV) dans le mésencéphale à des régions du système limbique comme le noyau accumbens (noyau gris) et le cortex orbitofrontal. La stimulation des différentes portions du circuit mésolimbique a un effet renforçateur. Le circuit mésolimbique utilise la dopamine comme neurotransmetteur. La stimulation de l'aire tegmentaire ventrale produit une libération de dopamine dans le noyau accumbens.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
RenforcementEn psychologie, le renforcement est un procédé qui augmente la probabilité de répétition d'un comportement. Les théories sur l'apprentissage par renforcement sont étudiées par la psychologie béhavioriste et font l'objet de nombreuses applications visant à modifier les comportements animaux et humains. B.F. Skinner fut le premier à en étudier systématiquement les effets sur des rats et des pigeons. Le renforcement est une procédure par laquelle la fréquence d'apparition d'un comportement va augmenter en fonction de sa conséquence.