Adding prediction risk to the theory of reward learning
Publications associées (52)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This chapter presents an overview of learning approaches for the acquisition of controllers and movement skills in humanoid robots. The term learning control refers to the process of acquiring a control strategy to achieve a task. While the definition is i ...
Brain-inspired Hyperdimensional (HD) computing is a promising solution for energy-efficient classification. However, the existing HD computing algorithms have a lack of controllability on the training iterations which often results in slow training or dive ...
We study model-free learning methods for the output-feedback Linear Quadratic (LQ) control problem in finite-horizon subject to subspace constraints on the control policy. Subspace constraints naturally arise in the field of distributed control and present ...
For decades, neuroscientists and psychologists have observed that animal performance on spatial navigation tasks suggests an internal learned map of the environment. More recently, map-based (or model-based) reinforcement learning has become a highly activ ...
Our brain continuously self-organizes to construct and maintain an internal representation of the world based on the information arriving through sensory stimuli. Remarkably, cortical areas related to different sensory modalities appear to share the same f ...
This chapter presents an overview of learning approaches for the acquisition of controllers and movement skills in humanoid robots. The term learning control refers to the process of acquiring a control strategy to achieve a task. While the definition is i ...
Many of the decisions we make in our everyday lives are sequential and entail sparse rewards. While sequential decision-making has been extensively investigated in theory (e.g., by reinforcement learning models) there is no systematic experimental paradigm ...
Reinforcement learning is a type of supervised learning, where reward is sparse and delayed. For example in chess, a series of moves is made until a sparse reward (win, loss) is issued, which makes it impossible to evaluate the value of a single move. Stil ...
Whether we prepare a coffee or navigate to a shop: in many tasks we make multiple decisions before reaching a goal. Learning such state-action sequences from sparse reward raises the problem of credit-assignment: which actions out of a long sequence should ...
Neuromorphic systems provide brain-inspired methods of computing. In a neuromorphic architecture, inputs are processed by a network of neurons receiving operands through synaptic interconnections, tuned in the process of learning. Neurons act simultaneousl ...