Fast Nonlinear Extraction of Plasma Equilibrium Parameters Using a Neural Network Mapping
Publications associées (43)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural ...
Combining different models is a widely used paradigm in machine learning applications. While the most common approach is to form an ensemble of models and average their individual predictions, this approach is often rendered infeasible by given resource co ...
Colorectal carcinoma (CRC) as a major health problem in industrialized countries is highly preventable and can be successfully treated in the early stages. However, incidence and mortality of CRC has increased over the last two decades. The reason could be ...
Transformer oil-based nanofluids are known to have higher thermal conductivity and heat transfer performance compared to conventional transformer oils. In this study, four different types of transformer oil-based nanofluids are synthesized using the well-k ...
The explosive growth of machine learning in the age of data has led to a new probabilistic and data-driven approach to solving very different types of problems. In this paper we study the feasibility of using such data-driven algorithms to solve classic ph ...
Two distinct limits for deep learning have been derived as the network width h -> infinity, depending on how the weights of the last layer scale with h. In the neural tangent Kernel (NTK) limit, the dynamics becomes linear in the weights and is described b ...
Training deep neural networks with the error backpropagation algorithm is considered implausible from a biological perspective. Numerous recent publications suggest elaborate models for biologically plausible variants of deep learning, typically defining s ...
With ever greater computational resources and more accessible software, deep neural networks have become ubiquitous across industry and academia.
Their remarkable ability to generalize to new samples defies the conventional view, which holds that complex, ...
Humans and some other animals are able to perform tasks that require coordination of movements across multiple temporal scales, ranging from hundreds of milliseconds to several seconds. The fast timescale at which neurons naturally operate, on the order of ...
Introduction: The unprecedented speed and scale of the COVID-19 pandemic necessitated the rapid implementation of untested public health measures to mitigate the consequences of viral spread. In the 8 months that have passed since the first recognized case ...