Publication

Crowding and the Architecture of the Visual System

Adrien Christophe Doerig
2020
Thèse EPFL
Résumé

Classically, vision is seen as a cascade of local, feedforward computations. This framework has been tremendously successful, inspiring a wide range of ground-breaking findings in neuroscience and computer vision. Recently, feedforward Convolutional Neural Networks (ffCNNs), a kind of deep neural network inspired by this classic framework, have revolutionized computer vision and been adopted as tools in neuroscience. However, despite these successes, there is much more to vision. First, there are flagrant architectural differences between biological systems and the classic framework. For example, recurrence is abundant in the brain but absent from the classic framework and ffCNNs. Although there is widespread agreement about the importance of these recurrent connections, their computational role is still poorly understood. Second, these architectural differences lead to behavioural differences too, highlighted by psychophysical evidence. Relatedly, ffCNNs are extremely vulnerable to small changes to their inputs and do not generalize well beyond the dataset used to train them. Human vision, in contrast, is much more robust. New insights are needed to face up to these challenges. In this thesis, I use visual crowding and related psychophysical effects as probes into visual processes that go beyond the classic framework. In crowding, perception of a target deteriorates in clutter. I focus on global aspects of crowding, in which perception of a small target is strongly modulated by the global configuration of elements across the visual field. I show that models based on the classic framework, including ffCNNs, cannot explain these effects for principled reasons and identify recurrent grouping and segmentation as a key missing ingredient. Then, I show that capsule networks, a recent kind of deep learning architecture combining the power of ffCNNs with recurrent grouping and segmentation, naturally explain these effects. I provide psychophysical evidence that humans indeed use a similar recurrent grouping and segmentation strategy in global crowding effects. In crowding, visual elements interfere across space. To study how elements interfere over time, I use the Sequential Metacontrast psychophysical paradigm, in which perception of visual elements depends on elements presented hundreds of milliseconds later. I psychophysically characterize the temporal structure of this interference and propose a simple computational model. My results support the idea that perception is a discrete process. I lay out theoretical implications of these findings. Together, the results presented here provide stepping-stones towards a fuller understanding of the visual system by suggesting architectural changes needed for more human-like neural computations.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.