Closed-loop controllerA closed-loop controller or feedback controller is a control loop which incorporates feedback, in contrast to an open-loop controller or non-feedback controller. A closed-loop controller uses feedback to control states or outputs of a dynamical system. Its name comes from the information path in the system: process inputs (e.g., voltage applied to an electric motor) have an effect on the process outputs (e.g., speed or torque of the motor), which is measured with sensors and processed by the controller; the result (the control signal) is "fed back" as input to the process, closing the loop.
Langage de description de matérielUn langage de description de matériel, ou du matériel (ou HDL pour hardware description language en anglais) est un langage informatique permettant la description d'un circuit électronique au niveau des transferts de registres (RTL). Celui-ci peut décrire les fonctions réalisées par le circuit (description comportementale) ou les portes logiques utilisées par le circuit (description structurelle). Il est possible d'observer le fonctionnement d'un circuit électronique modélisé dans un langage de description grâce à la simulation.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
PerceptronLe perceptron est un algorithme d'apprentissage supervisé de classifieurs binaires (c'est-à-dire séparant deux classes). Il a été inventé en 1957 par Frank Rosenblatt au laboratoire d'aéronautique de l'université Cornell. Il s'agit d'un neurone formel muni d'une règle d'apprentissage qui permet de déterminer automatiquement les poids synaptiques de manière à séparer un problème d'apprentissage supervisé. Si le problème est linéairement séparable, un théorème assure que la règle du perceptron permet de trouver une séparatrice entre les deux classes.
Stream processingIn computer science, stream processing (also known as event stream processing, data stream processing, or distributed stream processing) is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation. Stream processing encompasses dataflow programming, reactive programming, and distributed data processing. Stream processing systems aim to expose parallel processing for data streams and rely on streaming algorithms for efficient implementation.
Puce d'accélération de réseaux de neuronesUn Accélérateur d'IA pour accélérateur d'intelligence artificielle (ou NPU, Neural Processing Unit) est une catégorie de microprocesseur ou de systèmes de calculs conçu pour accélérer un réseau de neurones artificiels, accélérer des algorithmes de vision industrielle et d'apprentissage automatique pour la robotique, l'internet des objets et autres taches de calculs-intensifs ou de contrôle de capteurs. Il s'agit souvent de conceptions multicœurs et se concentrant généralement sur l'arithmétique de faible-précision, des nouvelles architectures de flux de données ou de la capacité de calcul en mémoire.
Hardware virtualizationHardware virtualization is the virtualization of computers as complete hardware platforms, certain logical abstractions of their componentry, or only the functionality required to run various operating systems. Virtualization hides the physical characteristics of a computing platform from the users, presenting instead an abstract computing platform. At its origins, the software that controlled virtualization was called a "control program", but the terms "hypervisor" or "virtual machine monitor" became preferred over time.
Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Méthode expérimentaleLes méthodes expérimentales scientifiques consistent à tester la validité d'une hypothèse, en reproduisant un phénomène (souvent en laboratoire) et en faisant varier un paramètre. Le paramètre que l'on fait varier est impliqué dans l'hypothèse. Le résultat de l'expérience valide ou non l'hypothèse. La démarche expérimentale est appliquée dans les recherches dans des sciences telles que, par exemple, la biologie, la physique, la chimie, l'informatique, la psychologie, ou encore l'archéologie.
Traitement automatique du langage naturelLe traitement automatique du langage naturel (TALN), en anglais natural language processing ou NLP, est un domaine multidisciplinaire impliquant la linguistique, l'informatique et l'intelligence artificielle, qui vise à créer des outils de traitement du langage naturel pour diverses applications. Il ne doit pas être confondu avec la linguistique informatique, qui vise à comprendre les langues au moyen d'outils informatiques.