Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The development of high power CW gyrotrons for ECRH heating of fusion relevant plasmas has been in progress for several years in a joint collaboration between different European research institutes and an industrial partner. Two development are on going, aiming, respectively, towards a 0.51-MW-210-s gyrotron at 118 GHz for the tokamaks TCV of CRPP (2 s pulse length) and Tore Supra of CEA (210 s pulse length), and towards a 1 MW-CW gyrotron at 140 GHz for the stellarator W7-X under construction in Greifswald. Series 118 GHz gyrotrons have been delivered to CRPP and CEA. Long pulse results (15.5 s at 400 kW) as well as considerations on power modulation capabilities of the tube and on long pulse effects are discussed. In a second development program, a 1-MW/CW 140 GHz gyrotron with a CVD diamond window and a single-stage depressed collector has been designed and constructed as a first prototype for the 10-MW ECRH (Elecron Cyclotion Resonance Heating) system of the new stellarator experiment Wendelstein 7-X of IPP Greifswald/Germany. The gyrotron operates in the TE28.8 cavity mode and provides a linearly polarized, TEM0.0 Gaussian RF beam. It is composed of a diode MIG gun, an improved beam tunnel, a high-mode purity low-ohmic loss cavity, an optimized non-linear up-taper, a highly efficient internal quasi-optical mode converter employing an improved launcher together with one quasi-elliptical and two beam shaping reflectors, a large single stage depressed collector at ground potential with a beam sweeping magnet, and a horizontal RF output. (C) 2001 Elsevier Science B.V. All rights reserved.