Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Actigraphy for long-term sleep/wake monitoring fails to correctly classify situations where the subject displays low activity, but is awake. In this paper we propose a new algorithm which uses both accelerometer and cardio-respiratory signals to overcome this restriction. Acceleration, electrocardiogram and respiratory effort were measured with an integrated wearable recording system worn on the chest by three healthy male subjects during normal daily activities. For signal processing a Fast Fourier Transformation and as classifier a feed-forward Artificial Neural Network was used. The best classifier achieved an accuracy of 96.14%, a sensitivity of 94.65% and a specificity of 98.19%. The algorithm is suitable for integration into a wearable device for long-term home monitoring.
David Atienza Alonso, Amir Aminifar, Tomas Teijeiro Campo, Alireza Amirshahi, Farnaz Forooghifar, Saleh Baghersalimi
,
Kamiar Aminian, Anisoara Ionescu, Abolfazl Soltani, Francesca Salis