Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Style de programmationLe style de programmation est un ensemble de règles ou de lignes directrices utilisées lors de l'écriture du code source d'un programme informatique. Il est souvent affirmé que suivre un style de programmation particulier aidera les programmeurs à lire et à comprendre le code source conforme au style, et aidera à éviter les erreurs. Un ouvrage classique sur le sujet, , est écrit dans les années 1970, et illustré avec des exemples dans les langages de programmations Fortran et PL/I.
Taux de défaillanceLe taux de défaillance, ou taux de panne, est une expression relative à la fiabilité des équipements et de chacun de leurs composants. Son symbole est la lettre grecque λ (lambda). Le taux de défaillance d'un équipement à l'instant t est la limite, si elle existe, du quotient de la probabilité conditionnelle que l'instant T de la (première) défaillance de cet équipement soit compris dans l'intervalle de temps donné [t, t + Δt] par la durée Δt de cet intervalle, lorsque Δt tend vers zéro, en supposant que l'entité soit disponible au début de l'intervalle de temps.
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Tôlevignette|Tôle à Nyhavn, Danemark. Une tôle est un morceau de métal obtenu au moyen d'un laminoir à produits plats. Les tôles les plus minces sont appelées « feuilles », celles d'épaisseur intermédiaire « tôles minces » (ou « tôles fines »), et les plus épaisses « tôles fortes » (ou « plaques »). Selon l'organisation professionnelle , les tôles minces sont définies comme ayant une épaisseur comprise entre 0,20 et . La limite inférieure est parfois donnée à , et la limite supérieure est parfois arrondie à .
Mécanique des contactsLa mécanique des contacts traite des calculs impliquant des corps élastiques, visco-élastiques ou plastiques lors de contacts statiques ou dynamiques. La mécanique des contacts est l’un des fondements de l’ingénierie mécanique et est indispensable pour la conception de projets sûrs et énergiquement efficaces. Elle peut être appliquée dans différents domaines tel que le contact roue-rail, les embrayages, les freins, les pneumatiques, les paliers et roulements, les moteurs à combustion, les liaisons mécaniques, les joints, les machines de production, le soudage par ultrasons, les contacts électriques et bien d'autres.
Diffusionless transformationDiffusionless transformations, also referred to as displacive transformations, are solid-state changes in the crystal structure that do not rely on the diffusion of atoms over long distances. Instead, they occur due to coordinated shifts in atomic positions, where atoms move by a distance less than the span between neighboring atoms while maintaining their relative arrangement. An illustrative instance of this is the martensitic transformation observed in steel.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Yield (engineering)In materials science and engineering, the yield point is the point on a stress-strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Below the yield point, a material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible and is known as plastic deformation.
Statistical theoryThe theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches. Within a given approach, statistical theory gives ways of comparing statistical procedures; it can find a best possible procedure within a given context for given statistical problems, or can provide guidance on the choice between alternative procedures.