Publication

Ultra-light photovoltaic composite sandwich structures

Julien Rion
2008
Thèse EPFL
Résumé

The ultra-light photovoltaic sandwich structure is a new multifunctional structure concept enabling weight and thus energy to be saved in high-tech solutions such as solar cars, solar planes or satellites. The novelty of this approach is to use solar cells as a load carrying element in the structure. The aim of this work was to investigate the failure mechanisms of such ultra-light sandwich structure and their correlation with microstructure, processing pressure, and strength in order to obtain optimal design and processing. To this end, composite sandwich structures were extensively studied with weights in the range of 650 – 850 g/m2, and comprising one 140 µm thick skin made of 0/90° carbon fiber-reinforced plastic (CFRP), one skin made of 130 µm thick mono-crystalline silicon solar cells, and a 29 kg/m3 honeycomb core. As a first step, core-to-skin bonding in a symmetric (CFRP / core / CFRP) sandwich, for which a design criterion was lacking, was especially studied. An adhesive deposition technique was developed enabling the adhesive weight used for core-to-skin bonding to be tailored. Based on adhesive contact angles, the formation of the adhesive fillets between honeycomb cell walls and skin was modeled. Core / skin debonding energy was measured and compared to core tearing energy measured with a new video-based method, and the failure mechanisms during skin peeling were investigated. It was thus ascertained that, to provide the highest debonding energy-to-weight ratio, the optimal adhesive weight was 35-40 g/m2. Furthermore, in contrast with classic sandwich structures with thicker skins, it was observed that the bending strength of the ultra-light sandwich panels increased with adhesive weight. This was due to the formation of adhesive fillets, which significantly increased the bending stiffness of the thin CFRP skin, and thus increased the compressive load causing local instability of the skin. Models taking into account the increased skin stiffness showed that the best adhesive quantity required to increase the strength-to-weight ratio was ∼40 g/m2. In a second step, the influence of processing pressure on the morphology and strength of symmetric (CFRP / core / CFRP) ultralight sandwich structures was investigated by using one-shot vacuum bag processing. This showed that higher processing pressures caused the formation of larger adhesive fillets and an increased waviness of the CFRP skin on vacuum bag side. These two effects had conflicting impacts on the strength of the structure. Waviness of the skin favored local instabilities, whereas adhesive menisci stabilized the skin. Modeling of the local instability of the skin by taking into account the waviness of the skin and the size of the menisci as a function of processing pressure enabled an optimal processing pressure of 0.7 bar to be identified, giving the highest strength-to-weight ratio. The third step of the study was devoted to the mechanical analysis of the mono-crystalline silicon solar cells. The brittle behavior of the cells was confirmed, and the Weibull failure probability curve was established with the mean tensile strength at 221 MPa. It was demonstrated by experimental testing and finite element modeling (FEM) that the low strength of the cells compared to the intrinsic strength of silicon (∼6.9 GPa) was not due to surface texturation of the cells used for increased efficiency, but to more severe surface or edge defects. FEM also showed that no significant reinforcing effect of the cells could be obtained with polymer encapsulation. In addition, thermo-mechanical stresses due to a mismatch of the coefficient of thermal expansion (CTE) between the Si cells and the polymer encapsulation were found to be negligible. In order to protect the cells against the environment, encapsulation of the cells was successfully carried out, using highly transparent fluoropolymer films treated with SiO2 plasma sputtering for improved adhesion, together with silicone adhesive. Finally, the integration of solar cells as a photovoltaic skin of an ultra-light sandwich structure was achieved using thin stress transfer ribbons to ensure load transfer between adjacent cells. It was observed that the cells were not damaged by sandwich panel processing, even in curved panels, thus showing that the processing windows of the different constituents were compatible. The asymmetric (Si / core / CFRP) photovoltaic sandwich structure with a weight equal to 800 g/m2 and a specific power density equal to ∼250 W/kg (i.e. 20 times more than standard commercial photovoltaic panels) demonstrated an equilibrated mechanical behavior, i.e. the CFRP skin, reinforcing ribbons, and solar cells had similar failure loads.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Cellule photovoltaïque
Une cellule photovoltaïque, ou cellule solaire, est un composant électronique qui, exposé à la lumière, produit de l’électricité grâce à l’effet photovoltaïque. La puissance électrique obtenue est proportionnelle à la puissance lumineuse incidente et elle dépend du rendement de la cellule. Celle-ci délivre une tension continue et un courant la traverse dès qu'elle est connectée à une charge électrique (en général un onduleur, parfois une simple batterie électrique).
Cellule photovoltaïque organique
vignette|On peut apercevoir les cellules photovoltaïques organiques Les cellules photovoltaïques organiques sont des cellules photovoltaïques dont au moins la couche active est constituée de molécules organiques. Leur développement constitue une tentative de réduction du coût de l'électricité photovoltaïque, sans conteste la principale barrière pour cette technologie, mais on espère aussi qu'elles seront plus fines, flexibles, faciles et moins chères à produire, tout en étant résistantes.
Film photovoltaïque
Un film photovoltaïque ou cellule solaire en couche mince ou encore couche mince photovoltaïque est une technologie de cellules photovoltaïques de deuxième génération, consistant à l'incorporation d'une ou plusieurs couches minces (ou TF pour ) de matériau photovoltaïque sur un substrat, tel que du verre, du plastique ou du métal. Les couches minces photovoltaïques commercialisées actuellement utilisent plusieurs matières, notamment le tellurure de cadmium (de formule CdTe), le diséléniure de cuivre-indium-gallium (CIGS) et le silicium amorphe (a-Si, TF-Si).
Afficher plus
Publications associées (86)

Vapor Deposition of Perovskite Solar Cells

Quentin Jean-Marie Armand Guesnay

Thanks to the continuous improvement of crystalline silicon (c-Si) solar cells, largely dominating the market, photovoltaic electricity is nowadays the cheapest source of energy on the market. Yet, solar energy is far from being completely harvested, as t ...
EPFL2023

Long-term performance and reliability of silicon heterojunction solar modules

Christophe Ballif, Alessandro Francesco Aldo Virtuani, Olatz Arriaga Arruti

The high-efficiency silicon heterojunction (SHJ) technology is now perceived mature enough to enter the Giga-Watt manufacturing scale with several players around the globe. The growth of the SHJ technology requires confidence from manufacturers, investors, ...
2023

Material Development for Perovskite/Silicon Tandem Photovoltaics

Peter Joseph Fiala

The developed world is built on the fact that energy is readily available and functionally infinite. The electricity from the wall, the gas at the station, and the heat in our homes are reliable and low-cost. But this comfort is so far only possible throug ...
EPFL2022
Afficher plus
MOOCs associés (6)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
L'Art des Structures I - Câbles et arcs [retired]
Ce cours présente les principes du fonctionnement, du dimensionnement et de la conception des structures. L'approche est basée sur une utilisation de la statique graphique et traite en particulier des
L'Art des Structures I - Câbles et arcs
L'art des structures propose une découverte du fonctionnement des structures porteuses, telles que les bâtiments, les toitures ou les ponts. Ce cours présente les principes du dimensionnement et les s
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.