Jeffreys priorIn Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: It has the key feature that it is invariant under a change of coordinates for the parameter vector . That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.
Declarative knowledgeDeclarative knowledge is an awareness of facts that can be expressed using declarative sentences, like knowing that Princess Diana died in 1997. It is also called theoretical knowledge, descriptive knowledge, propositional knowledge, and knowledge-that. It is not restricted to one specific use or purpose and can be stored in books or on computers. Epistemology is the main discipline studying declarative knowledge. Among other things, it studies the essential components of declarative knowledge.
Finger trackingIn the field of gesture recognition and , finger tracking is a high-resolution technique developed in 1969 that is employed to know the consecutive position of the fingers of the user and hence represent objects in 3D. In addition to that, the finger tracking technique is used as a tool of the computer, acting as an external device in our computer, similar to a keyboard and a mouse. The finger tracking system is focused on user-data interaction, where the user interacts with virtual data, by handling through the fingers the volumetric of a 3D object that we want to represent.
Conjugate priorIn Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
Transfert de connaissancesvignette|Logo illustratif de The Noun Project. Le transfert de connaissances ou compétences, dans les domaines du développement et de l’apprentissage de l'organisation, est le problème pratique de la transmission de données d’une partie de l’organisation à une autre (ou aux autres) partie(s). Le transfert de connaissances ne recouvre qu'une partie de la problématique du transfert de compétences pour les structures.
Procedural knowledgeProcedural knowledge (also known as knowing-how, and sometimes referred to as practical knowledge, imperative knowledge, or performative knowledge) is the knowledge exercised in the performance of some task. Unlike descriptive knowledge (also known as declarative knowledge, propositional knowledge or "knowing-that"), which involves knowledge of specific facts or propositions (e.g. "I know that snow is white"), procedural knowledge involves one's ability to do something (e.g. "I know how to change a flat tire").
Suite (mathématiques)vignette|Exemple de suite : les points bleus représentent ses termes. En mathématiques, une suite est une famille d'éléments — appelés ses « termes » — indexée par les entiers naturels. Une suite finie est une famille indexée par les entiers strictement positifs inférieurs ou égaux à un certain entier, ce dernier étant appelé « longueur » de la suite. Lorsque tous les éléments d'une suite (infinie) appartiennent à un même ensemble , cette suite peut être assimilée à une application de dans .
Inférence (logique)L’inférence est un mouvement de la pensée qui permet de passer d'une ou plusieurs assertions, des énoncés ou propositions affirmés comme vrais, appelés prémisses, à une nouvelle assertion qui en est la conclusion. Étymologiquement, le mot inférence signifie « reporter ». En théorie, l'inférence est traditionnellement divisée en déduction et induction, une distinction qui, en Europe, remonte au moins à Aristote ( avant Jésus-Christ). On distingue les inférences immédiates des inférences médiates telles que déductives, inductives et abductives.
Comportement humainvignette| Les Homo Sapiens (humains) affichent souvent différents types de comportement. Le comportement humain est la capacité potentielle et exprimée (mentalement, physiquement et socialement) d'individus ou de groupes humains à répondre à des stimuli internes et externes tout au long de leur vie. Alors que les traits spécifiques de la personnalité, du tempérament et de la génétique peuvent rester stables, d'autres comportements changent à mesure que l'on passe entre les étapes de la vie, c'est-à-dire de la naissance à l'adolescence, à l'âge adulte et, par exemple, à la parentalité et à la retraite.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.