Phenomenological models of synaptic plasticity based on spike timing
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Neurons cultured in vitro on MicroElectrode Array (MEA) devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line ...
Electrophysiological connectivity patterns in cortex often have a few strong connections, which are sometimes bidirectional, among a lot of weak connections. To explain these connectivity patterns, we created a model of spike timing–dependent plasticity (S ...
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity ...
Humans and animals learn by modifying the synaptic strength between neurons, a phenomenon known as synaptic plasticity. These changes can be induced by rather short stimuli (lasting, for instance, only a few seconds), yet, in order to be useful for long-te ...
Slow Feature Analysis (SFA) is an efficient algorithm for learning input-output functions that extract the most slowly varying features from a quickly varying signal. It has been successfully applied to the unsupervised learning of translation-, rotation-, ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...
We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algo ...
The ability of culturing neurons for a long time on MicroElectrode Array (MEA) devices plays a critical role in understanding some long-term behaviors of a neuronal network, such as the long-term synaptic plasticity. Moreover, pharmacological outcomes usua ...
The neocortex is the most computationally advanced portion of the brain. It is currently assumed to be composed of a large number of "cortical columns" – intricate arrangements of cortical neurons approximately 300-500 µm in diameter and 2-5 mm in height i ...
Changes of synaptic connections between neurons are thought to be the physiological basis of learning. These changes can be gated by neuromodulators that encode the presence of reward. We study a family of reward-modulated synaptic learning rules for spiki ...