Phenomenological models of synaptic plasticity based on spike timing
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Electrophysiological connectivity patterns in cortex often have a few strong connections, which are sometimes bidirectional, among a lot of weak connections. To explain these connectivity patterns, we created a model of spike timing–dependent plasticity (S ...
Humans and animals learn by modifying the synaptic strength between neurons, a phenomenon known as synaptic plasticity. These changes can be induced by rather short stimuli (lasting, for instance, only a few seconds), yet, in order to be useful for long-te ...
Changes of synaptic connections between neurons are thought to be the physiological basis of learning. These changes can be gated by neuromodulators that encode the presence of reward. We study a family of reward-modulated synaptic learning rules for spiki ...
In timing-based neural codes, neurons have to emit action potentials at precise moments in time. We use a supervised learning paradigm to derive a synaptic update rule that optimizes by gradient ascent the likelihood of postsynaptic firing at one or severa ...
The neocortex is the most computationally advanced portion of the brain. It is currently assumed to be composed of a large number of "cortical columns" – intricate arrangements of cortical neurons approximately 300-500 µm in diameter and 2-5 mm in height i ...
Slow Feature Analysis (SFA) is an efficient algorithm for learning input-output functions that extract the most slowly varying features from a quickly varying signal. It has been successfully applied to the unsupervised learning of translation-, rotation-, ...
Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity ...
Neurons cultured in vitro on MicroElectrode Array (MEA) devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line ...
The ability of culturing neurons for a long time on MicroElectrode Array (MEA) devices plays a critical role in understanding some long-term behaviors of a neuronal network, such as the long-term synaptic plasticity. Moreover, pharmacological outcomes usua ...
We propose a network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, biologically observed. The model is further driven by a supervised learning algo ...