Effects of stress and genotype on meta-parameter dynamics in reinforcement learning
Publications associées (41)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Machine learning is often cited as a new paradigm in control theory, but is also often viewed as empirical and less intuitive for students than classical model-based methods. This is particularly the case for reinforcement learning, an approach that does n ...
Model-free Reinforcement Learning (RL) generally suffers from poor sample complexity, mostly due to the need to exhaustively explore the state-action space to find well-performing policies. On the other hand, we postulate that expert knowledge of the syste ...
Heating, Ventilation, and Air Conditioning (HVAC) Systems utilize much energy, accounting for 40% of total building energy use. The temperatures in buildings are commonly held within narrow limits, leading to higher energy use. Measurements from office bui ...
This letter, addressed to a creature taking the form of a human chimera gathering the thoughts and knowledge of people who inspire and accompany us, recounts the experiences, affects and issues related to our first semester of teaching the course named DRA ...
An animals' ability to learn how to make decisions based on sensory evidence is often well described by Reinforcement Learning (RL) frameworks. These frameworks, however, typically apply to event-based representations and lack the explicit and fine-grained ...
Background: Previous studies on possible memory deficits in 22q11DS often focused on quantifying the information memorized, whereas learning processes have been mostly overlooked. Furthermore, methodological differences in task design have made verbal and ...
Learning how to act and adapting to unexpected changes are remarkable capabilities of humans and other animals. In the absence of a direct recipe to follow in life, behaviour is often guided by rewarding and by surprising events. A positive or a negative o ...
This thesis addresses theoretical and practical aspects of identification and subsequent control of self-exciting point processes. The main contributions correspond to four separate scientific papers.In the first paper, we address the challenge of robust i ...
Deep learning algorithms are responsible for a technological revolution in a variety oftasks including image recognition or Go playing. Yet, why they work is not understood.Ultimately, they manage to classify data lying in high dimension – a feat generical ...
Learning to achieve one’s goal in a complex environment is a complicated task. In reinforcement learning (RL) tasks, an agent interacts with the environment to learn optimal actions. In humans, striatal areas are strongly involved in these tasks. During ag ...