Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In this paper we present the AlvisP2P IR engine, which enables efficient retrieval with multi-keyword queries from a global document collection available in a P2P network. In such a network, each peer publishes its local index and invests a part of its local computing resources (storage, CPU, bandwidth) to maintain a fraction of a global P2P index. This investment is rewarded by the network-wide accessibility of the local documents via the global search facility. The AlvisP2P engine uses an optimized overlay network and relies on novel indexing/retrieval mechanisms that ensure low bandwidth consumption, thus enabling unlimited network growth. Our demonstration shows how an easy-to-install AlvisP2P client can be used to join an existing P2P network, index local (text or even multimedia) documents with collection specific indexing mechanisms, and control access rights to them.
Karl Aberer, Wojciech Galuba, Zoran Despotovic