Réponse hémodynamiqueLa réponse hémodynamique est un mécanisme physiologique qui consiste en une augmentation locale du débit sanguin afin de subvenir au besoin énergétiques des cellules en activité. vignette|La réponse hémodynamique canonique. Le pic correspond à une période brève mais intense de stimulation neuronale, qui nécessite une augmentation du flux de sang et de nutriments. Dès que ce besoin cesse, le débit sanguin retourne à ses niveaux homéostatiques.
Neuronal ensembleA neuronal ensemble is a population of nervous system cells (or cultured neurons) involved in a particular neural computation. The concept of neuronal ensemble dates back to the work of Charles Sherrington who described the functioning of the CNS as the system of reflex arcs, each composed of interconnected excitatory and inhibitory neurons. In Sherrington's scheme, α-motoneurons are the final common path of a number of neural circuits of different complexity: motoneurons integrate a large number of inputs and send their final output to muscles.
Neurosciences computationnellesLes neurosciences computationnelles (NSC) sont un champ de recherche des neurosciences qui s'applique à découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale, c'est-à-dire des algorithmes génériques qui permettent de comprendre l'implémentation dans notre système nerveux central du traitement de l'information associé à nos fonctions cognitives. Ce but a été défini en premier lieu par David Marr dans une série d'articles fondateurs.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
OrganisationUne organisation est en sciences sociales un groupe social formé d'individus en interaction, ayant un but collectif, mais dont les préférences, les informations, les intérêts et les connaissances peuvent diverger : une entreprise, une administration publique, un syndicat, un parti politique, une association, etc. L'organisation de quelque chose désigne l'action d'organiser (structurer, délimiter, agencer, répartir ou articuler). En ce sens, il s'agit d'un processus social.
Modèle mathématiquevignette|Un automate fini est un exemple de modèle mathématique. Un modèle mathématique est une traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques, puis généralement, en sens inverse, la traduction des résultats mathématiques obtenus en prédictions ou opérations dans le monde réel. Un modèle se rapporte toujours à ce qu’on espère en déduire.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Modèles du neurone biologiquevignette|390x390px|Fig. 1. Dendrites, soma et axone myélinisé, avec un flux de signal des entrées aux dendrites aux sorties aux bornes des axones. Le signal est une courte impulsion électrique appelée potentiel d'action ou impulsion. vignette|Figure 2. Évolution du potentiel postsynaptique lors d'une impulsion. L'amplitude et la forme exacte de la tension peut varier selon la technique expérimentale utilisée pour acquérir le signal.
Neurosciencesthumb|250px|Dessin de neurones du cervelet de pigeon par Santiago Ramón y Cajal (1899). Les neurosciences sont les études scientifiques du système nerveux, tant du point de vue de sa structure que de son fonctionnement, depuis l'échelle moléculaire jusqu'au niveau des organes, comme le cerveau, voire de l'organisme tout entier. Le champ de la recherche en neurosciences est un champ transdisciplinaire : la biologie, la chimie, les mathématiques, la bio-informatique ainsi que la neuropsychologie sont utilisées en neurosciences.