PolaritonLes polaritons sont des quasiparticules issues du couplage fort entre une onde lumineuse et une onde de polarisation électrique. Plusieurs cas de figure sont possibles : L'onde de polarisation est un phonon optique, c’est-à-dire essentiellement l'oscillation mécanique de deux atomes de charge opposée à l'intérieur d'un cristal. Les polaritons phononiques ont été beaucoup étudiés par la spectroscopie Raman dans les années 1970 - 80 et ont permis de mesurer la constante diélectrique à haute fréquence dans les semiconducteurs.
Onde de spinIn condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization.
Magnetic structureThe term magnetic structure of a material pertains to the ordered arrangement of magnetic spins, typically within an ordered crystallographic lattice. Its study is a branch of solid-state physics. Most solid materials are non-magnetic, that is, they do not display a magnetic structure. Due to the Pauli exclusion principle, each state is occupied by electrons of opposing spins, so that the charge density is compensated everywhere and the spin degree of freedom is trivial. Still, such materials typically do show a weak magnetic behaviour, e.
Séparation spin-chargeEn physique de la matière condensée, la séparation spin-charge est un comportement inhabituel de l'électron qui se produit dans certains matériaux sous certaines conditions. Dans ces situations, la particule élémentaire se divise en trois quasi-particules : le , l' et le chargeon (ou son antiparticule, le holon). Théoriquement, l'électron est toujours considéré comme un état lié des trois avec le spinon portant le spin, l'orbiton caractérisant l'orbitale atomique et le chargeon portant la charge électrique, mais dans certaines situations, les quasi-particules peuvent être et se comporter en particules indépendantes.
InfrarougeLe rayonnement infrarouge (IR) est un rayonnement électromagnétique de longueur d'onde supérieure à celle du spectre visible mais plus courte que celle des micro-ondes ou du domaine térahertz. Cette gamme de longueurs d'onde dans le vide de à se divise en infrarouge proche, au sens de proche du spectre visible, de environ, infrarouge moyen, qui s'étend jusqu'à , et infrarouge lointain. Les limites de ces domaines peuvent varier quelque peu d'un auteur à l'autre.
SpintroniqueLa spintronique, électronique de spin ou magnétoélectronique, est une technique qui exploite la propriété quantique du spin des électrons dans le but de stocker des informations. L’article Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices publié par Albert Fert et son équipe en 1988 est considéré comme l’acte de naissance de la spintronique. L'électronique classique repose sur une propriété essentielle d'une particule élémentaire (électron), sa charge électrique.
RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Spectroscopie RamanLa spectroscopie Raman (ou spectrométrie Raman) et la microspectroscopie Raman sont des méthodes non destructives d'observation et de caractérisation de la composition moléculaire et de la structure externe d'un matériau, qui exploite le phénomène physique selon lequel un milieu modifie légèrement la fréquence de la lumière y circulant. Ce décalage en fréquence dit l'effet Raman correspond à un échange d'énergie entre le rayon lumineux et le milieu, et donne des informations sur le substrat lui-même.
Magnétorésistance géanteLa magnétorésistance géante (en anglais, Giant Magnetoresistance Effect ou GMR) est un effet quantique observé dans les structures de films minces composées d'une alternance de couches ferromagnétiques et de couches non magnétiques communément appelées multicouches. Elle se manifeste sous forme d'une baisse significative de la résistance observée sous l'application d'un champ magnétique externe. Dans la découverte initiale, les deux couches ferromagnétiques adjacentes ont en l'absence de champ magnétique appliqué une aimantation antiparallèle qui résulte d'un couplage antiferromagnétique.
Supraconducteur à haute températureUn supraconducteur à haute température (en anglais, high-temperature superconductor : high- ou HTSC) est un matériau présentant une température critique de supraconductivité relativement élevée par rapport aux supraconducteurs conventionnels, c'est-à-dire en général à des températures supérieures à soit . Ce terme désigne en général la famille des matériaux de type cuprate, dont la supraconductivité existe jusqu'à . Mais d'autres familles de supraconducteurs, comme les supraconducteurs à base de fer découverts en 2008, peuvent aussi être désignées par ce même terme.