Concept

Onde de spin

Résumé
In condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only μeV in keeping with typical Curie points at room temperature and below. The simplest way of understanding spin waves is to consider the Hamiltonian for the Heisenberg ferromagnet: where J is the exchange energy, the operators S represent the spins at Bravais lattice points, g is the Landé g-factor, μB is the Bohr magneton and H is the internal field which includes the external field plus any "molecular" field. Note that in the classical continuum case and in 1 + 1 dimensions Heisenberg ferromagnet equation has the form In 1 + 1, 2 + 1 and 3 + 1 dimensions this equation admits several integrable and non-integrable extensions like the Landau-Lifshitz equation, the Ishimori equation and so on. For a ferromagnet J > 0 and the ground state of the Hamiltonian is that in which all spins are aligned parallel with the field H. That is an eigenstate of can be verified by rewriting it in terms of the spin-raising and spin-lowering operators given by: resulting in where z has been taken as the direction of the magnetic field. The spin-lowering operator S− annihilates the state with minimum projection of spin along the z-axis, while the spin-raising operator S+ annihilates the ground state with maximum spin projection along the z-axis. Since for the maximally aligned state, we find where N is the total number of Bravais lattice sites. The proposition that the ground state is an eigenstate of the Hamiltonian is confirmed.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées (19)
Unités associées

Chargement

Concepts associés

Chargement

Cours associés (7)
PHYS-419: Solid state physics III
The aim of this course is to provide an introduction to the theory of a few remarkable phenomena of condensed matter physics ranging from the Quantum Hall effects to superconductivity.
PHYS-310: Solid state physics II
This course gives an introduction into Solid State Physics (crystal structure of materials, electronic and magnetic properties, thermal and electronic transport). The course material is at the level o
MSE-432: Introduction to magnetic materials in modern technologies
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
Séances de cours associées

Chargement

MOOCs associés

Chargement