Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
When can a unimodular random planar graph be drawn in the Euclidean or the hyperbolic plane in a way that the distribution of the random drawing is isometry-invariant? This question was answered for one-ended unimodular graphs in Benjamini and Timar, using ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
Graphs offer a simple yet meaningful representation of relationships between data. Thisrepresentation is often used in machine learning algorithms in order to incorporate structuralor geometric information about data. However, it can also be used in an inv ...
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
This work presents a graph neural network (GNN) framework for solving the maximum independent set (MIS) problem, inspired by dynamic programming (DP). Specifically, given a graph, we propose a DP-like recursive algorithm based on GNNs that firstly construc ...
Graph processing systems are used in a wide variety of fields, ranging from biology to social networks.
Algorithms to mine graphs incur many random accesses, and the sparse nature of the graphs of interest, exacerbates this. As DRAM sustains high bandwidt ...
Many optimization, inference, and learning tasks can be accomplished efficiently by means of decentralized processing algorithms where the network topology (i.e., the graph) plays a critical role in enabling the interactions among neighboring nodes. There ...
The articles in this special section focus on graph signal processing. Generically, the networks that sustain our societies can be understood as complex systems formed by multiple nodes, where global network behavior arises from local interactions between ...
We investigate the impact of more realistic room simulation for training far-field keyword spotting systems without fine-tuning on in-domain data. To this end, we study the impact of incorporating the following factors in the room impulse response (RIR) ge ...
In this work we consider the problem of learning an Erdos-Renyi graph over a diffusion network when: i) data from only a limited subset of nodes are available (partial observation); ii) and the inferential goal is to discover the graph of interconnections ...