Microscopie à super-résolutionLa microscopie à super-résolution est un ensemble de techniques permettant d'imager en microscopie optique des objets à une résolution à l’échelle nanométrique. Elle se démarque par le fait que la résolution obtenue n'est plus limitée par le phénomène de diffraction. Du fait de la diffraction de la lumière, la résolution d’un microscope optique conventionnel est en principe limitée, indépendamment du capteur utilisé et des aberrations ou imperfections des lentilles.
Transformation de Fourier discrèteEn mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète.
Modèles compartimentaux en épidémiologieLes modèles mathématiques de maladies infectieuses, d'abord outils purement théoriques, ont commencé à être mis en pratique avec le problème du SIDA dans les années 1980. Lors de la pandémie Covid 19, les modélisations mathématiques ont connu un essor lors de la prise de décision relatives aux politiques de santé publique et a également contribué à l'épidémiosurveillance de la maladie. Bien avant cela, depuis la pandémie de grippe espagnole, des modèles compartimentaux sont utilisés pour faciliter les calculs de probabilité de contagion.
Algorithme de rechercheEn informatique, un algorithme de recherche est un type d'algorithme qui, pour un domaine, un problème de ce domaine et des critères donnés, retourne en résultat un ensemble de solutions répondant au problème. Supposons que l'ensemble de ses entrées soit divisible en sous-ensemble, par rapport à un critère donné, qui peut être, par exemple, une relation d'ordre. De façon générale, un tel algorithme vérifie un certain nombre de ces entrées et retourne en sortie une ou plusieurs des entrées visées.
Mathematical modelling of infectious diseasesMathematical models can project how infectious diseases progress to show the likely outcome of an epidemic (including in plants) and help inform public health and plant health interventions. Models use basic assumptions or collected statistics along with mathematics to find parameters for various infectious diseases and use those parameters to calculate the effects of different interventions, like mass vaccination programs. The modelling can help decide which intervention(s) to avoid and which to trial, or can predict future growth patterns, etc.
Modèles PBPKUn modèle pharmacocinétique physiologique (PBPK) est un modèle mathématique construit pour prédire l'absorption, la distribution, le métabolisme et l'excrétion (ADME) de substances chimiques naturelles ou synthétiques chez l'homme ou l'animal. Ce type de modèle est utilisé dans la recherche et le développement de nouveaux médicaments, pour l'évaluation des risques de toxicité des substances chimiques et en biologie.
PharmacocinétiqueLa , parfois désignée sous le nom de « l'ADME » (voir plus loin) et qui suit la phase biopharmaceutique, a pour but d'étudier le devenir d'une substance active contenue dans un médicament après son administration dans l'organisme. Elle comprend, après la phase biopharmaceutique précédant le premier passage trans-membranaire, quatre grandes étapes : Absorption (A) ; Distribution (D) ; Métabolisme (M) ; Excrétion du principe actif et de ses métabolites (E).