Résumé
En mathématiques, la transformation de Fourier discrète (TFD) sert à traiter un signal numérique. Elle constitue un équivalent discret (c'est-à-dire pour un signal défini à partir d'un nombre fini d'échantillons) de la transformation de Fourier (continue) utilisée pour traiter un signal analogique. Plus précisément, la TFD est la représentation spectrale discrète dans le domaine des fréquences d'un signal échantillonné. La transformation de Fourier rapide est un algorithme particulier de calcul de la transformation de Fourier discrète. La transformation de Fourier discrète d'un signal de échantillons est le vecteur défini par : On obtient ainsi une représentation spectrale discrète du signal échantillonné . La TFD ne calcule pas le spectre continu d'un signal continu. Elle permet seulement d'évaluer une représentation spectrale discrète (spectre échantillonné) d'un signal discret (signal échantillonné) sur une fenêtre de temps finie (échantillonnage borné dans le temps). L'exemple ci-dessous peut laisser croire que la TFD permet de calculer le spectre d'un signal continu, mais cela n'arrive que lorsque la fenêtre d'échantillonnage correspond à un multiple strictement supérieur à deux fois la période du signal échantillonné (dans ce cas on a forcément évité le repliement de spectre, c'est le théorème d'échantillonnage de Nyquist-Shannon) : thumb|center|600px|Figure 1 : Transformée de Fourier discrète sur N = 64 points d'un sinus de fréquence échantillonné à échantillons par seconde (). La transformation de Fourier discrète inverse est donnée par : En fait, il existe plusieurs définitions de la transformation de Fourier discrète et son inverse, qui différent par le facteur multiplicatif. On peut tout à fait normaliser la TFD par , et ne pas normaliser la TFD inverse, ou encore normaliser les deux par , le but étant dans tous les cas de retrouver le signal originel par la TFD inverse de sa TFD. On peut remarquer que ce signal est périodique de période , et renseigne sur les fréquences comprises entre et (où est la fréquence d'échantillonnage, souvent notée dans la littérature anglo-saxonne).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (11)
Cours associés (129)
COM-303: Signal processing for communications
Students learn digital signal processing theory, including discrete time, Fourier analysis, filter design, adaptive filtering, sampling, interpolation and quantization; they are introduced to image pr
COM-514: Mathematical foundations of signal processing
A theoretical and computational framework for signal sampling and approximation is presented from an intuitive geometric point of view. This lecture covers both mathematical and practical aspects of
MICRO-311(a): Signals and systems II (for MT)
Ce cours aborde la théorie des systèmes linéaires discrets invariants par décalage (LID). Leurs propriétés et caractéristiques fondamentales y sont discutées, ainsi que les outils fondamentaux permett
Afficher plus
MOOCs associés (15)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Afficher plus