Sous-groupe de FrattiniSoit G un groupe (au sens mathématique). Les éléments de G qui appartiennent à tout sous-groupe maximal de G forment un sous-groupe de G, qu'on appelle le sous-groupe de Frattini de G et qu'on note Φ(G). Si G admet au moins un sous-groupe maximal, on peut parler de l'intersection de ses sous-groupes maximaux et Φ(G) est égal à cette intersection. Si G n'a pas de sous-groupe maximal, Φ(G) est égal à G tout entier.
Torsion groupIn group theory, a branch of mathematics, a torsion group or a periodic group is a group in which every element has finite order. The exponent of such a group, if it exists, is the least common multiple of the orders of the elements. For example, it follows from Lagrange's theorem that every finite group is periodic and it has an exponent dividing its order. Examples of infinite periodic groups include the additive group of the ring of polynomials over a finite field, and the quotient group of the rationals by the integers, as well as their direct summands, the Prüfer groups.
Partie génératrice d'un groupeEn théorie des groupes, une partie génératrice d'un groupe est une partie A de ce groupe telle que tout élément du groupe s'écrit comme produit d'un nombre fini d'éléments de A et de leurs inverses. Un groupe est dit de type fini lorsqu'il admet une partie génératrice finie. Un groupe engendré par un seul élément est isomorphe soit au groupe additif des entiers relatifs (Z, +), soit à un groupe additif de classes modulo n (Z/nZ, +) ; on dit que c'est un groupe monogène.
Foncteur HomEn mathématiques, le foncteur Hom est un foncteur associé aux morphismes de la catégorie des ensembles. Il est central en théorie des catégories, notamment du fait de son rôle dans le lemme de Yoneda et parce qu'il permet de définir le foncteur Ext. Soit une catégorie localement petite. Pour tout couple d'objets A et B dans cette catégorie, un morphisme induit une fonction pour tout objet X.
Congruence subgroupIn mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
Théorème de Burnside (groupe résoluble)En mathématiques, le théorème de Burnside appartient à la théorie des groupes finis. Son énoncé est : Il est nommé en l'honneur de William Burnside, qui l'a démontré en 1904, à l'aide de la théorie des représentations d'un groupe fini. À une époque où que tout groupe fini ayant pour ordre une puissance de nombre premier est résoluble, Georg Frobenius démontre en 1895 que tout groupe d'ordre pq, où p et q sont des nombres premiers, est résoluble. Ce résultat est étendu trois ans plus tard par Camille Jordan aux groupes d'ordre pq.
Groupe de PrüferEn mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier.
Foncteur exactEn mathématiques, un foncteur exact est un foncteur qui commute aux limites inductives et projectives. De manière équivalente, c'est un foncteur qui préserve les suites exactes de catégories abéliennes et c'est de cela que vient la dénomination. Des foncteurs de ce type apparaissent naturellement en homologie et d'une manière générale en théorie des catégories, où leurs propriétés permettent des calculs élégants. Le « défaut d'exactitude » est mesuré par les foncteurs dérivés, par exemple les foncteurs Tor et Ext.
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Endomorphismevignette|Projection orthogonale sur une droite. Ceci est un exemple d'endomorphisme qui n'est pas un automorphisme. En mathématiques, un endomorphisme est un morphisme (ou homomorphisme) d'un objet mathématique dans lui-même. Ainsi, par exemple, un endomorphisme d'espace vectoriel E est une application linéaire f : E → E, et un endomorphisme de groupe G est un morphisme de groupes f : G → G, etc. En général, nous pouvons parler d'endomorphisme de n'importe quelle catégorie.