Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
NiII complexes of the new pincer amidobis(amine) ligand are described. The Ni chloride complex catalyzes Kumada-Corriu-Tamao coupling of unactivated alkyl halides with alkyl Grignard reagents, as well as double C-C coupling of CH2Cl2 with alkyl Grignard reagents (see schemes). The synthesis, properties, and reactivity of nickel(II) complexes of a newly developed pincer amidobis(amine) ligand (MeNN2) are described. Neutral or cationic complexes [(MeNN2)NiX] (X=OTf (6), OC(O)CH3 (7), CH3CN (8), OMe (9)) were prepared by salt metathesis or chloride abstraction from the previously reported [(MeNN2)NiCl] (1). The Lewis acidity of the {(MeNN2)Ni} fragment was measured by the 1H NMR chemical shift of the coordinated CH3CN molecule in 8. Electrochemical measurements on 1 and 8 indicate that the electron-donating properties of NN2 are similar to those of the analogous amidobis(phosphine) (pnp) ligands. The solid-state structures of 6-8 were determined and compared to those of 1 and [(MeNN2)NiEt] (3). In all complexes, the MeNN2 ligand coordinates to the NiII ion in a mer fashion, and the square-planar coordination sphere of the metal is completed by an additional donor. The coordination chemistry of MeNN2 thus resembles that of other three-dentate pincer ligands, for example, pnp and arylbis(amine) (ncn). Reactions of 2 with alkyl monohalides, dichlorides, and trichlorides were investigated. Selective CC bond formation was observed in many cases. Based on these reactions, efficient Kumada-Corriu-Tamao coupling of unactivated alkyl halides and alkyl Grignard reagents with 1 as the precatalyst was developed. Good yields were obtained for the coupling of primary and secondary iodides and bromides. Double C-C coupling of CH2Cl2 with alkyl Grignard reagents by 1 was also realized. The scope and limitations of these transformations were studied. Evidence was found for a radical pathway in Ni-catalyzed C-C cross-coupling reactions, which involves NiII alkyl intermediates.
Rosario Scopelliti, Marinella Mazzanti, Ivica Zivkovic
Rosario Scopelliti, Kay Severin, Farzaneh Fadaei Tirani, Bastiaan Kooij, Zhaowen Dong
Jérôme Waser, Xingyu Liu, Nieves Pilar Ramirez Hernandez, Tobias Michael Milzarek