Publication

Particle Swarm Optimization of Memory usage in Embedded Systems

Résumé

In this paper, we propose a dynamic, non-dominated sorting, multi-objective particle-swarm-based optimizer, named Hierarchical Non-dominated Sorting Particle Swarm Optimizer (H-NSPSO), for memory usage optimization in embedded systems. It significantly reduces the computational complexity of others Multi-Objective Particle Swarm Optimization (MOPSO) algorithms. Concretely, it first uses a fast non-dominated sorting approach with O(mN^2) computational complexity. Second, it maintains an external archive to store a fixed number of non-dominated particles, which is used to drive the particle population towards the best non-dominated set over many iteration steps. Finally, the proposed algorithm separates particles into multi sub-swarms, building several tree networks as the neighborhood topology. HNSPSO has been made adaptive in nature by allowing its vital parameters (inertia weight and learning factors) to change within iterations. The method is evaluated using two real world examples in embedded applications and compared with existing covering methods.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (35)
Optimisation par essaims particulaires
L'optimisation par essaims particulaires (OEP ou PSO en anglais) est une métaheuristique d'optimisation, inventée par Russel Eberhart (ingénieur en électricité) et James Kennedy (socio-psychologue) en 1995. Cet algorithme s'inspire à l'origine du monde du vivant. Il s'appuie notamment sur un modèle développé par Craig Reynolds à la fin des années 1980, permettant de simuler le déplacement d'un groupe d'oiseaux. Une autre source d'inspiration, revendiquée par les auteurs, James Kennedy et Russel Eberhart, est la socio-psychologie.
Optimisation multiobjectif
L'optimisation multiobjectif (appelée aussi Programmation multi-objective ou optimisation multi-critère) est une branche de l'optimisation mathématique traitant spécifiquement des problèmes d'optimisation ayant plusieurs fonctions objectifs. Elle se distingue de l'optimisation multidisciplinaire par le fait que les objectifs à optimiser portent ici sur un seul problème. Les problèmes multiobjectifs ont un intérêt grandissant dans l'industrie où les responsables sont contraints de tenter d'optimiser des objectifs contradictoires.
Intelligence distribuée
L'intelligence distribuée, appelée aussi intelligence en essaim, désigne l'apparition de phénomènes cohérents à l'échelle d'une population dont les individus agissent selon des règles simples. L'interaction ou la synergie entre actions individuelles simples peut de façons variées permettre l'émergence de formes, organisations, ou comportements collectifs, complexes ou cohérents, tandis que les individus eux se comportent à leur échelle indépendamment de toute règle globale.
Afficher plus
Publications associées (48)

Optimization Methods for Control: From Embedded Programmable Hardware to Data-Driven Process Optimization

Harsh Ambarishkumar Shukla

The research community has been making significant progress in hardware implementation, numerical computing and algorithm development for optimization-based control. However, there are two key challenges that still have to be overcome for optimization-base ...
EPFL2021

Increasing Superstructure Optimization Capacity Through Self-Learning Surrogate Models

François Maréchal, Ivan Daniel Kantor, Julia Granacher

Simulation-based optimization models are widely applied to find optimal operating conditions of processes. Often, computational challenges arise from model complexity, making the generation of reliable design solutions difficult. We propose an algorithm fo ...
2021

An optimized material removal process

Jean-François Molinari, Son-Jonathan Pham-Ba

We conduct boundary element simulations of a contact problem consisting of an elastic medium subject to tangential load. Using a particle swarm optimization algorithm, we find the optimal shape and location of the micro-contacts to maximize for a given loa ...
2020
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.