We develop a statistical model to describe the spatially varying behavior of local neighborhoods of coefficients in a multi- scale image representation. Neighborhoods are modeled as samples of a multivariate Gaussian density that are modulated and rotated according to the values of two hidden random variables, thus al- lowing the model to adapt to the local amplitude and orientation of the signal. A third hidden variable selects between this oriented process and a nonoriented scale mixture of Gaussians process, thus providing adaptability to the local orientedness of the signal. Based on this model, we develop an optimal Bayesian least squares esti- mator for denoising images and show through simulations that the resulting method exhibits significant improvement over previously published results obtained with Gaussian scale mixtures.
Luc Thévenaz, Zhisheng Yang, Simon Adrien Zaslawski
Mikhail Kapralov, Amir Zandieh, Navid Nouri