Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a dynamic faceted search system for discovery-driven analysis on data with both textual content and structured attributes. From a keyword query, we want to dynamically select a small set of "interesting" attributes and present aggregates on them to a user. Similar to work in OLAP exploration, we define "interestingness" as how surprising an aggregated value is, based on a given expectation. We make two new contributions by proposing a novel "navigational" expectation that’s particularly useful in the context of faceted search, and a novel interestingness measure through judicious application of p-values. Through a user survey, we find the new expectation and interestingness metric quite effective. We develop an efficient dynamic faceted search system by improving a popular open source engine, Solr. Our system exploits compressed bitmaps for caching the posting lists in an inverted index, and a novel directory structure called a bitset tree for fast bitset intersection. We conduct a comprehensive experimental study on large real data sets and show that our engine performs 2 to 3 times faster than Solr.
Christophe Marcel Georges Galland, Valeria Vento, Sachin Suresh Verlekar, Philippe Andreas Rölli
Katie Sabrina Catherine Rosie Marsden
Christophe Ballif, Marine Dominique C. Cauz, Laure-Emmanuelle Perret Aebi