Substrate arrays of iridium oxide microelectrodes for in-vitro neuronal interfacing
Publications associées (90)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Minimally invasive monitoring of the electrical activity of specific cortical areas using implantable microsystems offers the promise of diagnosing neurological diseases, as well as detecting and identifying neural activity patterns which are specific to a ...
A key issue toward the realization of retinal prosthetic devices is a reliable transduction of the information carried by light into specific patterns of electrical activity at the level of the networks involved in visual information processing. In this pe ...
Intracranial EEG information used for epilepsy surgery has been provided from large widely spaced electrodes over a narrow bandwidth. However, over the last decades, research on animal and more recently on human, promoted by increased interest in developin ...
The present invention relates to methods and neuronal cellular preparations allowing monitoring intracellular and transcellular molecular events on both short and long timescales in an ex vivo neuronal network of intact post-mitotic neurons. In particular, ...
A 100-channel fully implantable wireless broadband neural recording system was developed. It features 100 parallel broadband (0.1 Hz-7.8 kHz) neural recording channels, a medical grade 200 mAh Li-ion battery recharged inductively at 150 kHz, and data telem ...
Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-sca ...
Future emerging technologies in upper limb neuroprosthetic devices will require decoding and executing the user's intended movement. Previous studies, using invasive and non-invasive brain signals, have shown promising results in decoding movement directio ...
Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data ...
Microelectrode arrays (MEAs) are employed to study extracellular electrical activity in neuronal tissues. Neverthe- less, commercially available MEAs provide a limited number of recording sites and do not allow a precise identifi- cation of the spatio-temp ...
Presently, the cells' electrical activity is measured either by extracellular microelectrode array (MEA) or by microscopic fluorescence imaging methods. The MEA is a non-invasive in vitro technique which allows long-term recording at multicellular level wh ...