A rivet model for channel formation by aerolysin-like pore-forming toxins
Publications associées (91)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Lipid membranes are self-assembled structures whose composition determines the properties of membranes of cells and organelles. The molecular level understanding of lipid membranes is based on spectroscopy and MD simulations of lipid monolayer systems. As ...
The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dyn ...
Integral and peripheral membrane proteins account for one-third of the human proteome, and they are estimated to represent the target for over 50% of modern medicinal drugs. Despite their central role in medicine, the complex, heterogeneous and dynamic nat ...
Protein-mimetic materials are of great interest for biotechnology to grant protein-like properties to artificial systems. Additionally, these materials can be used to shed light on the fundamental properties of proteins in many environments. Nanoparticles, ...
Two-dimensional (2D) materials with atom- or few-atoms-thick layers have emerged as building-blocks in the synthesis of the next-generation membrane-based separations. Generally, 2D material-based membranes display high permeation and high selectivity due ...
Hybrid lipid/nanoparticle membranes are suitable model systems both to study the complex interactions between nanoparticles and biological membranes, and to demonstrate technological concepts in cellular sensing and drug delivery. Unfortunately, embedding ...
Pore-forming toxins (PFTs) form holes in membranes causing one of the most catastrophic damages to a target cell. Target organisms have evolved a regulated response against PFTs damage including cell membrane repair. This ability of cells strongly depends ...
Lipid membranes provide diverse and essential functions in our cells relating to transport, energy harvesting and signaling. This variety of functions is controlled by the molecular architecture, such as the presence of hydrating water, specific chemical c ...
Biological membranes are highly dynamic and complex lipid bilayers, responsible for the fate of living cells. To achieve this function, the hydrating environment is crucial. However, membrane imaging typically neglects water, focusing on the insertion of p ...
The bacterial Shiga toxin interacts with its cellular receptor, the glycosphingolipid globotriaosylceramide (Gb3 or CD77), as a first step to entering target cells. Previous studies have shown that toxin molecules cluster on the plasma membrane, despite th ...