Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Recent research proposes accelerating processor microarchitecture simulation through statistical sampling. Prior simulation sampling approaches construct accurate model state for each measurement by continuously warming large microarchitectural structures (e.g., caches and the branch predictor) while emulating the billions of instructions between measurements. This approach, called functional warming, occupies hours of runtime while the detailed simulation that is measured requires mere minutes. To eliminate the functional warming bottleneck, we propose TurboSMARTS, a simulation framework that stores functionally-warmed state in a library of small, reusable checkpoints. TurboSMARTS enables the creation of the thousands of checkpoints necessary for accurate sampling by storing only the subset of warmed state accessed during simulation of each brief execution window. TurboSMARTS matches the accuracy of prior simulation sampling techniques (i.e., ±3% error with 99.7% confidence), while estimating the performance of an 8-way out-of-order superscalar processor running SPEC CPU2000 in 91 seconds per benchmark, on average, using a 12 GB checkpoint library.
Anastasia Ailamaki, Periklis Chrysogelos, Viktor Sanca
Marilyne Andersen, Jan Wienold, Stephen William Wasilewski