Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.
Skolem arithmeticIn mathematical logic, Skolem arithmetic is the first-order theory of the natural numbers with multiplication, named in honor of Thoralf Skolem. The signature of Skolem arithmetic contains only the multiplication operation and equality, omitting the addition operation entirely. Skolem arithmetic is weaker than Peano arithmetic, which includes both addition and multiplication operations. Unlike Peano arithmetic, Skolem arithmetic is a decidable theory.
Tableau (structure de données)En informatique, un tableau est une structure de données représentant une séquence finie d'éléments auxquels on peut accéder efficacement par leur position, ou indice, dans la séquence. C'est un type de conteneur que l'on retrouve dans un grand nombre de langages de programmation. Dans les langages à typage statique (comme C, Java et OCaml), tous les éléments d’un tableau doivent être du même type. Certains langages à typage dynamique (tels APL et Python) permettent des tableaux hétérogènes.
Vérification formelleIn the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics. Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
Liste chaînéeUne liste chaînée ou liste liée (en anglais linked list) désigne en informatique une structure de données représentant une collection ordonnée et de taille arbitraire d'éléments de même type, dont la représentation en mémoire de l'ordinateur est une succession de cellules faites d'un contenu et d'un pointeur vers une autre cellule. De façon imagée, l'ensemble des cellules ressemble à une chaîne dont les maillons seraient les cellules.
Space hierarchy theoremIn computational complexity theory, the space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Raisonnement déductifEn logique, la déduction est une inférence menant d'une affirmation générale à une conclusion particulière. La déduction est une opération par laquelle on établit au moyen de prémisses une conclusion qui en est la conséquence nécessaire, en vertu de règles d'inférence logiques. Ces règles sont notamment l'objet des Premiers Analytiques d'Aristote. On l'oppose généralement à l'induction, qui consiste au contraire à extraire d'un nombre fini de propositions données par l'observation, une conclusion ou un petit nombre de conclusions plus générales.
Calcul des prédicatsEn logique mathématique, le calcul des prédicats du premier ordre, ou calcul des relations, logique quantificationnelle, ou tout simplement calcul des prédicats, est un système formel utilisé pour raisonner et décrire des énoncés en mathématiques, informatique, intelligence artificielle, philosophie et linguistique. Il a été proposé par Gottlob Frege une formalisation du langage des mathématiques entre la fin du et le début du .
Arbre enracinéEn théorie des graphes, un arbre enraciné ou une arborescence est un graphe acyclique orienté possédant une unique racine, et tel que tous les nœuds sauf la racine ont un unique parent. En informatique, c'est également une structure de données récursive utilisée pour représenter ce type de graphes. Dans un arbre, on distingue deux catégories d'éléments : les feuilles (ou nœuds externes), éléments ne possédant pas de fils dans l'arbre ; les nœuds internes, éléments possédant des fils (sous-branches).