Concept

Space hierarchy theorem

In computational complexity theory, the space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems. The foundation for the hierarchy theorems lies in the intuition that with either more time or more space comes the ability to compute more functions (or decide more languages). The hierarchy theorems are used to demonstrate that the time and space complexity classes form a hierarchy where classes with tighter bounds contain fewer languages than those with more relaxed bounds. Here we define and prove the space hierarchy theorem. The space hierarchy theorems rely on the concept of space-constructible functions. The deterministic and nondeterministic space hierarchy theorems state that for all space-constructible functions f(n), where SPACE stands for either DSPACE or NSPACE, and o refers to the little o notation. Formally, a function is space-constructible if and there exists a Turing machine which computes the function in space when starting with an input , where represents a string of n consecutive 1s. Most of the common functions that we work with are space-constructible, including polynomials, exponents, and logarithms. For every space-constructible function , there exists a language L that is decidable in space but not in space . The goal is to define a language that can be decided in space but not space . The language is defined as L: For any machine M that decides a language in space , L will differ in at least one spot from the language of M. Namely, for some large enough k, M will use space on and will therefore differ at its value. On the other hand, L is in . The algorithm for deciding the language L is as follows: On an input x, compute using space-constructibility, and mark off cells of tape.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.