Algorithmique répartieUn algorithme réparti (ou distribué) est une suite d'instructions et il est généralement un algorithme parallèle (mais pas toujours, exemple, une communication téléphonique) réparti sur plusieurs sites. Chaque site calcule (i.e. produit de nouveaux résultats) et communique (i.e. échange des données avec d'autres sites). Un algorithme réparti décrit le fonctionnement d'un système informatique composé de plusieurs unités de calcul reliées par un réseau de communication, tels que les routeurs dans Internet.
Classification naïve bayésiennevignette|Exemple de classification naïve bayésienne pour un ensemble de données dont le nombre augmente avec le temps. La classification naïve bayésienne est un type de classification bayésienne probabiliste simple basée sur le théorème de Bayes avec une forte indépendance (dite naïve) des hypothèses. Elle met en œuvre un classifieur bayésien naïf, ou classifieur naïf de Bayes, appartenant à la famille des classifieurs linéaires. Un terme plus approprié pour le modèle probabiliste sous-jacent pourrait être « modèle à caractéristiques statistiquement indépendantes ».
Classifieur linéaireEn apprentissage automatique, les classifieurs linéaires sont une famille d'algorithmes de classement statistique. Le rôle d'un classifieur est de classer dans des groupes (des classes) les échantillons qui ont des propriétés similaires, mesurées sur des observations. Un classifieur linéaire est un type particulier de classifieur, qui calcule la décision par combinaison linéaire des échantillons. « Classifieur linéaire » est une traduction de l'anglais linear classifier.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Système d'exploitation distribuéUn système d'exploitation distribué est une couche logicielle au dessus d'un ensemble de nœuds de calculs indépendants, communiquant par un système de réseau propre ou général. Chaque nœud comprend dans ce type de système d'exploitation un sous ensemble de l’agrégat global. Chaque nœud comporte son propre noyau servant à contrôler le matériel et les couches basses des communications en réseau. Des logiciels de plus haut niveau sont chargés de coordonner les activités collaboratives de l'ensemble de la grappe et des éléments de chacun de ces nœuds.
Abstraction (informatique)En informatique, le concept d'abstraction identifie et regroupe des caractéristiques et traitements communs applicables à des entités ou concepts variés ; une représentation abstraite commune de tels objets permet d'en simplifier et d'en unifier la manipulation. thumb|upright=1.4|Différentes couches de logiciel, partant d'en bas, le matériel est programmé en langage binaire, via un firmware, qui permet une abstraction pour le noyau, puis lui même pour le système d'exploitation, qui a son tour permet une abstraction pour les applications.
Abstraction (philosophie)L’abstraction est l'opération mentale, de l'esprit par laquelle les propriétés générales, universelles et nécessaires d'un objet sont distinguées de ses propriétés particulières et contingentes. Par cette opération, notre pensée prend une distance par rapport à l'expérience sensible et forme l'ensemble de nos idées qui seront consignées dans le langage. L'opération d'abstraction permet de distinguer entre l'abstrait et le concret. Ceux-ci forment une opposition conceptuelle fondamentale en philosophie.
Calcul distribuéUn calcul distribué, ou réparti ou encore partagé, est un calcul ou un traitement réparti sur plusieurs microprocesseurs et plus généralement sur plusieurs unités centrales informatiques, et on parle alors d'architecture distribuée ou de système distribué. Le calcul distribué est souvent réalisé sur des clusters de calcul spécialisés, mais peut aussi être réalisé sur des stations informatiques individuelles à plusieurs cœurs. La distribution d'un calcul est un domaine de recherche des sciences mathématiques et informatiques.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.