Publication

Adaptive Multiple Frequency Tracking Algorithm: Detection of Stable Atrial Fibrillation Sources from Standard 12-Lead ECG

Résumé

The detection of stable atrial fibrillation (AF) sources remains one of the major challenges in the AF management. In this study, we investigated the feasibility of detecting stable AF sources from (non invasive) data simulated by means of numerical procedures. By using a 3D biophysical model of the atria (Courtemanche membrane kinetics) and a compartmental torso model, 21 different episodes of AF were generated (transmembrane potentials through out the tissue and 12-lead ECGs). The stability of the episodes was established by visual inspection of the electrical propagation over the epicardial surface (group A: without a stable source, group B: with stable sources). This evaluation constitutes our gold standard. We hypothesized that during AF sustained by stable sources ECG signals include significant components at the frequencies related to the cycle length of these respective AF sources. These frequency components were jointly estimated on the 12-lead ECGs with an adaptive multiple frequency tracking algorithm. The ratio between the sum of the estimated frequency component powers and the sum of the 12-lead ECG signal powers was used as the discrimination feature r to estimate the number of sources. Nine simulated AF episodes were characterized by complex dynamics (group A). Group B comprised 11 simulated AF episodes having a single stable source and one having two stable sources. The r values observed were: group A, r = 0.05 ± 0.04 (mean ± SD) and group B, r = 0.28 ± 0.17. With a discrimination feature threshold set at 0.14, no stable AF source was detected in group A. Eight single AF sources were detected among the 11 ones of group B. The case with two AF sources in group B was also correctly classified. This corresponds to 85.7% correct classification, 100% sensitivity and 75% specificity. The proposed approach provides information about the presence stable AF sources. This information may lead to a more accurate identification of patients suitable for specific AF ablation procedures.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.