Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Recent developments in thick-film technology have seen the widespread introduction of lead- free alternative to traditional conductive, dielectric and overglaze compositions. Resistors, however, have lagged behind this trend, as developing balanced and well-behaved resistive compositions from scratch is significantly more involved than other thick-film materials. Bismuth- containing glasses based on the bismuth-zinc-boron-silicon oxide system, which have been studied for over 20 years, constitute a promising alternative to the usual lead borosilicate materials, with which they are quite similar. This paper presents, after a historical perspective of thick-film resistor technologies, a short overview of bismuth glasses and recent developments in applying them to lead-free thick-film resistors, with a focus on low-firing piezoresistive compositions. Recent work, both outside and in our laboratory, suggests that successful development of these novel lead-free materials is possible, and that they can be applied to the manufacture of thick-film piezoresistive sensors on steel substrates. Moreover, as firing temperature below 600°C are achievable, application on glass and some aluminium alloys is also possible.
Michael Graetzel, Antonio Abate, Hui Zhang