Théorie des réseauxvignette|Graphe partiel de l'internet, basé sur les données de opte.org du 15 janvier 2005 (voir description de l'image pour plus de détails) La théorie des réseaux est l'étude de graphes en tant que représentation d'une relation symétrique ou asymétrique entre des objets discrets. Elle s'inscrit dans la théorie des graphes : un réseau peut alors être défini comme étant un graphe où les nœuds (sommets) ou les arêtes (ou « arcs », lorsque le graphe est orienté) ont des attributs, comme une étiquette (tag).
ZeroconfZero-configuration networking ou Zeroconf est l'appellation générique d'un ensemble de protocoles permettant de créer automatiquement un réseau IP utilisable sans configuration particulière ou serveurs dédiés. Cela permet aux utilisateurs novices de connecter en réseau des ordinateurs, des imprimantes et d'autres périphériques et de s'attendre à ce que celui-ci soit automatiquement fonctionnel.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Graphe aléatoirevignette|Graphe orienté aléatoire avec 20 nœuds et une probabilité de présence d'arête égale à 0,1. En mathématiques, un graphe aléatoire est un graphe généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdős et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968. Il y a deux modèles d'Erdős et Rényi, formellement différents, mais étroitement liés : le graphe aléatoire binomial et le graphe aléatoire uniforme.
Marche aléatoireEn mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Loi de distribution des vitesses de MaxwellEn théorie cinétique des gaz, la loi de distribution de vitesses de Maxwell quantifie la répartition statistique des vitesses des particules dans un gaz homogène à l'équilibre thermodynamique. Les vecteurs vitesse des particules suivent une loi normale. Cette loi a été établie par James Clerk Maxwell en 1860 et confirmée ultérieurement par Ludwig Boltzmann à partir de bases physiques qui fondent la physique statistique en 1872 et 1877.
Énergie (physique)En physique, l'énergie est une grandeur qui mesure la capacité d'un système à modifier un état, à produire un travail entraînant un mouvement, un rayonnement électromagnétique ou de la chaleur. Dans le Système international d'unités (SI), l'énergie s'exprime en joules et est de dimension . Le mot français vient du latin vulgaire energia, lui-même issu du grec ancien / enérgeia. Ce terme grec originel signifie « force en action », par opposition à / dýnamis signifiant « force en puissance » ; Aristote a utilisé ce terme , pour désigner la réalité effective en opposition à la réalité possible.
Attention (machine learning)Machine learning-based attention is a mechanism mimicking cognitive attention. It calculates "soft" weights for each word, more precisely for its embedding, in the context window. It can do it either in parallel (such as in transformers) or sequentially (such as recursive neural networks). "Soft" weights can change during each runtime, in contrast to "hard" weights, which are (pre-)trained and fine-tuned and remain frozen afterwards. Multiple attention heads are used in transformer-based large language models.
Relative likelihoodIn statistics, when selecting a statistical model for given data, the relative likelihood compares the relative plausibilities of different candidate models or of different values of a parameter of a single model. Assume that we are given some data x for which we have a statistical model with parameter θ. Suppose that the maximum likelihood estimate for θ is . Relative plausibilities of other θ values may be found by comparing the likelihoods of those other values with the likelihood of .
Analyse réelleL'analyse réelle est la branche de l'analyse qui étudie les ensembles de réels et les fonctions de variables réelles. Elle étudie des concepts comme les suites et leurs limites, la continuité, la dérivation, l'intégration et les suites de fonctions. La présentation de l'analyse réelle dans les ouvrages avancés commence habituellement avec des démonstrations simples de résultats de la théorie naïve des ensembles, une définition claire de la notion de fonction, une introduction aux entiers naturels et la démonstration importante du raisonnement par récurrence.