vignette|Graphe orienté aléatoire avec 20 nœuds et une probabilité de présence d'arête égale à 0,1. En mathématiques, un graphe aléatoire est un graphe généré par un processus aléatoire. Le premier modèle de graphes aléatoires a été popularisé par Paul Erdős et Alfréd Rényi dans une série d'articles publiés entre 1959 et 1968. Il y a deux modèles d'Erdős et Rényi, formellement différents, mais étroitement liés : le graphe aléatoire binomial et le graphe aléatoire uniforme. Dans les deux modèles, il s'agit d'un graphe aléatoire non orienté, qui n'a ni boucles, ni arêtes multiples. On utilise les notations suivantes : l'ensemble des sommets est {1, 2, 3, ..., n} noté par la suite ; les arêtes potentiellement présentes sont les n(n–1)/2 parties à deux éléments de ; l'ensemble de ces arêtes est parfois noté Il sera noté toutefois J pour des raisons de commodité typographique, et de cohérence avec l'article sur l'inégalité de Harris. Dans ce modèle, souvent noté chacune des n(n–1)/2 arêtes potentielles est présente avec probabilité p, et absente avec probabilité 1-p, cela indépendamment du statut des autres arêtes. Le cas p = 0,5 a été étudié par Erdős dès 1947. Le nombre N d'arêtes de suit la loi binomiale de paramètres n(n–1)/2 et p. Dans ce modèle, souvent noté on choisit uniformément un sous-ensemble de M arêtes parmi les n(n–1)/2 arêtes possibles. Si on considère un graphe G à n sommets possède M arêtes, la probabilité d'obtenir G est donnée par C'est le modèle qui est principalement étudié dans la série d'articles fondateurs publiés par Erdős et Rényi entre 1959 et 1968. On peut partir d'un graphe sans arêtes, donc totalement déconnecté, et ajouter une arête tirée au hasard uniformément, puis une autre, sans remise. On obtient ainsi une suite croissante (au sens de l'inclusion de l'ensemble des arêtes), de 1 + n(n–1)/2 graphes aléatoires, qui forme un processus à temps discret à valeurs dans l'ensemble des graphes. Chaque terme de la suite est un graphe aléatoire uniforme défini à la section précédente.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (30)
MATH-360: Graph theory
The course aims to introduce the basic concepts and results of modern Graph Theory with special emphasis on those topics and techniques that have proved to be applicable in theoretical computer scienc
COM-512: Networks out of control
The goal of this class is to acquire mathematical tools and engineering insight about networks whose structure is random, as well as learning and control techniques applicable to such network data.
MATH-602: Inference on graphs
The class covers topics related to statistical inference and algorithms on graphs: basic random graphs concepts, thresholds, subgraph containment (planted clique), connectivity, broadcasting on trees,
Afficher plus
Séances de cours associées (56)
Propagation de la croyance : méthodes clés et analyse
Couvre la propagation de la croyance, une méthode clé pour l'analyse et l'algorithme.
Modèle de bloc stochastique: Détection communautaire
Couvre le modèle de bloc stochastique pour la détection communautaire.
Espace latent et RDPG : Analyse statistique des données du réseau
Couvre les modèles spatiaux latents, la régression logistique, le RDPG et les réseaux du monde réel.
Afficher plus
Publications associées (202)
Concepts associés (16)
Science des réseaux
vignette|Les liens de la network science La Science des Réseaux, ou Network Science, est une discipline scientifique émergente qui se donne pour objet l'étude des relations, liens et interconnexions entre les choses, et non les choses en elles-mêmes. Champ interdisciplinaire de recherche, elle s'applique en physique, biologie, épidémiologie, science de l'information, science cognitive et réseaux sociaux. Elle vise à découvrir des propriétés communes au comportement de ces réseaux hétérogènes via la construction d'algorithmes et d'outils.
Réseau complexe
En théorie des graphes, un réseau complexe est un réseau possédant une architecture et une topologie complexe et irrégulière. Comme tous les réseaux, ils sont composés de nœuds (ou sommets ou points) représentant des objets, interconnectés par des liens (ou arêtes ou lignes). Ces réseaux sont des représentations abstraites des relations principalement présentes dans la vie réelle dans une grande diversité de systèmes biologiques et technologiques.
Théorie de la percolation
La théorie de la percolation est une branche de la physique statistique et mathématique qui s'intéresse aux caractéristiques des milieux aléatoires, plus précisément aux ensembles de sommets connectés dans un graphe aléatoire. Cette théorie s'applique notamment en science des matériaux pour formaliser les propriétés d'écoulement dans les milieux poreux et pour la modélisation de phénomènes naturels, comme les incendies. L’histoire de la percolation prend ses racines dans l’industrie du charbon.
Afficher plus
MOOCs associés (4)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.